

Top physics at CMS

Tae Jeong Kim (Korea University)

On behalf of CMS collaboration For ICFP 2012 at Kolymbari in Greece 15/06/2012

Introduction

- Outline
 - Motivation
 - Top production and decays
 - Physics Objects
 - Results
 - Top pair cross section
 - Differential cross section
 - Single top cross section
 - Top mass
 - Top quark properties
 - Search for ttbar resonance
 - Charge asymmetry

Motivation

Top physics

- Can give hints for EWSB.
 - Top mass is the heaviest SM particles.
- Indirect search for Higgs and new physics.
- Test of Perturbative QCD through precise measurement
 - direct access to fundamental SM parameters.
- Main background for new physics
 - possible deviation due to new physics

Top production & decays

• Single top production

σ(7 TeV)~64 pb

s-channel σ(7 TeV)~4.6 pb (

tW-channel σ(7 TeV)~I 5.6 pb

Kidonakis, NLO+NNLL t-channel: PRD 83 (2011) 091503 s-channel: PRD 81 (2010) 054028 tW-channel: PRD 82 (2010) 054018

• Top pair production

NLO (MCFM): 158 pb approx. NNLO: 163 pb Kidonakis, PRD 82 (2010) 114030 Langenfeld, Moch, Uwer, PRD80 (2009) 054009 Top decays

Physics Objects & MC sample

Muons	$ \eta < 2.4$ (2.1), Particle-based isolation	
Electrons	$ \eta < 2.5$, (veto 1.44 < $ \eta < 1.57$), Particle-based isolation	
Taus	charged hadrons + calorimeter informations (HPS algo.)	
Jets	Particle-flow [*] jets (Anti-Kt with dR=0.5), $p_T > 30$ GeV	
MET	opposite transverse direction of vector sum of all particles	

- Top signal sample
 - MadGraph with matrix elements up to three additional partons
 - POWHEG for single top production.
 - ME are matched with Pythia for Parton showering (PS)
 - Top mass 172.5 GeV
 - use NLO 157.5 pb for normalization.
 - TAUOLA for tau decay

*Combines all information from all sub-detectors and reconstruct all particles: charged hadrons, photons, neutral hadrons, muons and electrons which are used for jet and MET reconstruction as well as for isolation requirement.

ICFP, 15/06/2012

Lepton+jets

- Binned profile likelihood fitting
- Fitting to secondary vertex mass distribution in 1 b-tag and 2 b-tag jet bins

σ(comb.)=164.4±2.8(stat.)±11.9(syst.)±7.4(lumi.) pb

Dilepton

≥4

TOP-11-005

- Event Selection
 - Two opposite sign isolated leptons p_T > 20 GeV
 - M_{II} > 12 GeV & |M_{II} 91| > 15 GeV (ee/ $\mu\mu$)
 - At least two jets $p_T > 30 \text{ GeV}$
 - MET > 30 GeV (ee/μμ)
 - One b-tagging
- Data-driven way
 - Lepton efficiency
 - DY and QCD

- Counting method
- BLUE (Best Linear Unbiased Estimator) method for combination of three decay modes

 $\sigma = 169.9 \pm 3.9(\text{stat.}) \pm 16.3(\text{syst.}) \pm 7.6(\text{lumi.})\text{pb}$

Tau decay mode

- Tau identification (hadronic tau decay)
 - Hadrons plus strips (HPS) combining charged hadrons and EM particles in strips in calorimeter to take into account π^0
- tau+lepton decay mode
 - H⁺ (<top mass) can contribute.
 - Data-driven background estimation
 - The jet can fake tau jet \rightarrow fake rate.
 - Take average over two estimates from
 - QCD (gluon jet) + W+jets(quark jet)

σ=148.7±23.6(stat.)±26.0(syst.)±8.9(lumi.)pb

- tau+jet decay mode (not for combination yet)
 - 4 jets are required.
 - QCD background is from data.
 - NN method

 $\sigma = 156 \pm 12(\text{stat.}) \pm 33(\text{syst.}) \pm 3(\text{lumi.})\text{pb}$

ICFP, 15/06/2012

Hadronic decay

- Branching ratio is large ~ 45 %
 - suffer from large multi jet background
- Event selection
 - 6 jets are required
 - at least two b-tagged jets
- QCD contribution from data
 - scale factor from non b-tagged jet sample (more than 6 jets) to b-tagged jets as a function of p_T and η.
- Uncertainty mainly from
 - b-tagging
 - jet energy scale
 - background estimation.

 $\sigma = 136 \pm 20(\text{stat.}) \pm 40(\text{syst.}) \pm 8(\text{lumi.})\text{pb}$

9

Combined cross section

TOP-11-024

Tae leong Kim

- All possible decay channels are combined.
- Binned Likelihood fitting method.
- Take counting method analysis (dilepton) and unbinned analysis (hadronic decay) as one bin.
- Blue method is also used as cross check.

 $\delta\sigma/\sigma = 8\%$

 $\sigma_{t\bar{t}} = 165.8 \pm 2.2(stat.) \pm 10.6(syst) \pm 7.8(lumi.) \text{ pb}$

Differential cross section

- Test pQCD in all kinematic variables of lepton, top quark and ttbar system.
- Sensitive to new physics.
- Dilepton and lepton+jets
- Normalized differential cross section.

$$\frac{1}{\sigma} \frac{d\sigma^{i}}{d\mathbf{X}} = \frac{1}{\sigma} \frac{N_{\text{Data}}^{i} - N_{\text{BG}}^{i}}{\Delta_{\mathbf{X}}^{i} \epsilon^{i} L}$$

- Full kinematic reconstruction or four momentum sum (dilepton M_{tt})
- Bin by bin or SVD unfolding method
- Unfolding at parton level
- Systematic uncertainties
 - shape uncertainties
 - hadronization uncertainty

Differential cross section

• Top quark distribution - Excellent agreement!

Tae Jeong Kim

Single top (t-channel)

σ [pb]

 10^{2}

t-channel single top quark production

D0, 5.4 fb⁻¹

CMS preliminary, 1.14/1.51 fb

- Event selection
 - one isolated e ($p_T > 30$ GeV) or μ ($p_T > 20$ GeV)
 - 2 jets, MET > 30 GeV, $|\eta| < 5.0$
 - one "tight" b-tag
 - transverse $M_W > 40 \text{ GeV}$

Single top (tW production)

- Events selection
 - similar to dilepton event selection.
 - second b-jet is vetoed.
 - requirement on p_T of system (< 60GeV)
- Use maximum likelihood fit

• Observed significance = 2.7 σ

TOP-11-015

- Muon+jets
- Likelihood method considering all jets permutations and b-tagging information.
- Top quark mass and JES are obtained simultaneously.
- b-JES uncertainty is dominant.

 $m_t = 172.64 \pm 0.57 \text{ (stat+JES)} \pm 1.18 \text{ (syst) GeV}$

JES = 1.004 ± 0.005 (stat) ± 0.012 (syst)

Mass measurement in dilepton

- Reconstruct the top quark using KINb method.
 - based on energy-momentum conservation.
- To find solution, z component of ttbar system is varied.
- The lowest invariant mass when the two top masses is less than 3 GeV.
- Fitting to reconstructed top mass with signal shape linear functions of m_t.

 $m_{\rm top} = 173.3 \pm 1.2(\text{stat.})^{+2.5}_{-2.6}(\text{syst.}) \text{ GeV/}c^2$

Mass combination

TOP-11-018

- Combining four results from dilepton and lepton+jets in 2010 and 2011.
- Use BLUE method for the combination.
 - The weight goes to the lepton+jets channel
- Competitive with Tevatron result
- Towards LHC and world combination in process.

 $m_{top} = 172.6 \pm 0.4 \text{ (stat.)} \pm 1.2 \text{ (syst.)} GeV/c^2$

Top mass from cross section

- The cross section, σ_{tt} depends on MC top mass.
- Therefore, we can extract top mass from cross section measurement.
- Used cross section is from dilepton decay mode.
- Extract both pole mass and MS mass.
 - Pole mass is close to MC top mass.
 - Joint likelihood fitting to extract mass.

$$L(m_t) = \int f_{\exp}(\sigma_{t\bar{t}}|m_t) f_{th}(\sigma_{t\bar{t}}|m_t) d\sigma_{t\bar{t}}$$

- Dependence on the PDFs.
 - I-2 GeV
- Extracted top mass not competitive with the direct measurement.

The theory errors \rightarrow scales, PDFs and α_s (m_z)

Approx. NNLO × MSTW08NNLO	m_t^{pole} / GeV	$m_t^{\overline{\mathrm{MS}}}$ / GeV
Langenfeld et al. [7]	$170.3^{+7.3}_{-6.7}$	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	_
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$

TOP-11-008

ICFP, 15/06/2012

Top-antitop mass difference

- CPT appears to be conserved in nature.
 - The mass of any particles must equal that of its anti-particles.
- Lepton+jets channel.
- Split the sample according to the charge of the lepton.
- Kinematic fit is used.
 - the same method for top mass reconstruction .

 $\Delta m_{\rm t} = -0.44 \pm 0.46 \, ({\rm stat.}) \pm 0.27 \, ({\rm syst.}) \, {
m GeV}$

arXiv:1204.2807

FCNC search

- t \rightarrow Wb ~100% in SM
- BSM enhances $t \rightarrow Zq$
- Event selections
 - three leptons $(p_T > 20 \text{ GeV})$ veto on fourth lepton
 - two jets, MET > 30 GeV
 - $\bullet\;M_{Zj}$, M_{Wj} near top mass
 - b tagging or HTs
- The branching ratio of t \rightarrow Zq larger than 0.34 % is excluded at 95%.

$B(t \rightarrow Wb)/B(t \rightarrow V)$ (D)

- t→Wb ~100%
- Event selection
 - Two isolated leptons
 - MET > 30 GeV for ee, $\mu\mu$
- factorize b-tagging multiplicity
 - as a function of R, ε_b , ε_q
- • ϵ_b , ϵ_q are obtained from QCD two jets example : reconstructed from top quark and selected as two b-jets. \rightarrow

$$P_{k} = R^{2} \varepsilon_{b}^{2} + 2R(1-R)\varepsilon_{b}\varepsilon_{q} + (1-R)^{2}\varepsilon_{b}\varepsilon_{q}$$

1.15

 $\begin{array}{c} 1 \\ R = B(t \rightarrow Wb)/B(t \rightarrow Wq) \end{array}$

ICFP, 15/06/2012

0.9

0.95

0.85

Top quark charge

- Top charge +2/3.
- Assign top charge
 - muons from W + soft muons from B-hadrons
- Take into account wrong charge assignment.
 - b-enriched data sample.
- Exclude scenario with an exotic top quark (A=-1).

 $A = \frac{N_{SM} - N_{XM}}{N_{SM} + N_{XM}}$

$$A_{\rm meas} = 0.97 \pm 0.12_{\rm stat} \pm 0.31_{\rm syst}$$

ICFP, 15/06/2012

Tae Jeong Kim

W polarization

• The polarization fraction was extracted by fitting to data $con\theta^*$ distribution with two types of fitting.

• $F_R = 0$ and $F_R = Free$ parameter.

ICFP. 15/06/2012

$$F_0 = 0.567 \pm 0.074(\text{stat.}) \pm 0.047(\text{syst.})$$

$$F_L = 0.393 \pm 0.045 (\text{stat.}) \pm 0.029 (\text{syst.})$$

 $F_R = 0.040 \pm 0.035 \text{ (stat.)} \pm 0.044 \text{ (syst.)}$

• Used to constrain anomalous Wtb couplings.

 $\mathcal{L}_{tWb} = \mathcal{L}_{tWb}^{\rm SM} - \frac{g}{\sqrt{2}} \bar{b} \Big[(V_L P_L + V_R P_R) \gamma^{\mu} + \frac{\mathrm{i}\sigma^{\mu\nu}q_{\nu}}{m_W} (G_L P_L + G_R P_R) \Big] tW_{\mu}$

New physics in m(tt) resonance

- The resonance decaying into top pairs are predicted by several models.
- Dilepton
 - Standard dilepton event selection.
 - NN method to improve significance
- Lepton + jets
 - full event reconstruction.
 - Fitting together different Njets, b-tags.

Charge Asymmetry

- CDF has already observed 3.4 sigma deviation with respect to SM above 450 GeV.
- Could be explained by possible new exchange particles in t-channel from various theory paper.
- Charge asymmetry is sensitive to this additional production mode.
- Event selection follows I+jets analysis requiring 4 jets and one b-tag.

Charge Asymmetry

ICFP, 15/06/2012

- CMS has produced precise measurements.
 - in most of all possible decay modes
 - including differential cross section
 - starting to constrain theory.
- All measurements are consistent with SM
 - no hints for new physics yet.
- 2012 year will be more interesting.
 - more differential distribution.
 - Improve to reduce systematic uncertainty.
 - constrain theory uncertainty using data.
 - searching for new physics in top decays.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults