Beam-beam effects in the LHC

(and some perspectives for 7 TeV operation)

W. Herr

for LHC beam-beam working group

Beam-beam observations in the LHC (2011 - 2012)

- Relevant questions we have addressed:
 - Head-on beam-beam: are we limited?
 - Do we see long range effects?
 - Do we see "PACMAN" effects (i.e. bunch-to-bunch differences)?
 - Are coherent beam-beam effects a problem?
 - Can we level the luminosity?
 - > Can we extrapolate to other configurations?

Observations: head-on beam-beam effects I

- First dedicated experiment with few bunches
- Test maximum beam-beam parameter (at injection energy) head-on only
 - **)** Intensity 1.9 \cdot 10¹¹ p/bunch (nominal: 1.15 \cdot 10¹¹)
 - Emittances 1.1 1.2 μ m (nominal: 3.75 μ m)

Observations: head-on beam-beam effects

- First dedicated experiment with few bunches
- Test maximum beam-beam parameter (at injection energy) head-on only
 - Intensity $1.9 \cdot 10^{11}$ p/bunch (nominal: $1.15 \cdot 10^{11}$)
 - Emittances 1.1 1.2 μ m (nominal: 3.75 μ m)
 - > Achieved:
 - $\xi = 0.017$ for single collision (≈ 5 times nominal!)
 - $\xi = 0.034$ for two collision points (IP1 and IP5)
 - No obvious emittance increase or lifetime problems during collisions (maximum ξ not yet found)
- $oldsymbol{ ilde{ ext{$\Lambda$}}}$ No long range encounters present !

Can we understand the large beam-beam parameter?

- "Nominal" value was conservative choice (50% of SPS value!)
- Twice "nominal" value is standard in operation
- Large value (likely) due to:
 - **)** Low noise, vibrations etc.
 - > Small tune modulation (small PC ripple, low Q')
- → Not really our biggest problem (as expected)
- → But important to provide Landau damping!

Experimental study of long range beam-beam interactions

- Test long range interactions with present machine in dedicated experiments
- Trains of 36 bunches per beam
- Spacing 50 ns, maximum 48 parasitic encounters
- Study collisions in IP1 and IP5 (small $\beta^* \longrightarrow \text{strong}$ long range), procedure:
 - > Reduce crossing angle (separation in small steps)
 - > Observe losses bunch by bunch

What do we expect?

- Dynamic aperture as function of normalized separation (W.Herr, D.Kaltchev, LPN 416, 2008)
- \rightarrow Simulations for 50 ns (x) and 25 ns (+)
- "Visible" losses expected for dynamic aperture below 3 σ

Experiment 1: scan of crossing angle - losses

- First test (2011) with $\beta^* = 1.50$ m, intensity: 1.2 10^{11} p/b, emittance: 2.0 2.5 μ m
- Bunch by bunch loss as function of crossing angle in IP1
- Different behaviour of the bunches in the train

Experiment 2: scan of crossing angle - emittances

- Emittances during scan, vertical, beam 2, train 2
- No emittance increase reduced dynamic aperture

Comparison with our expectations

- Data estimated from separation scan (50 ns, 3.5 TeV, $1.25 \, 10^{11} \mathrm{p}$)
- Dynamic aperture as function of normalized separation (W.Herr, D.Kaltchev, LPN 416)

Summary: scan of crossing angle

Observations:

- Losses start after some threshold (4 5 σ separation) remember: 48 parasitic encounters (nominal 120!)
- > Smaller separation leads to increased losses (dynamic aperture!) as predicted
- No effect on emittances
- > Different bunches have different threshold!
- > Strong evidence for PACMAN effects

PACMAN effects along train

- Integrated losses and number of long range interactions
- Losses directly related to number of long range interactions
- → So-called 'PACMAN' bunches have better life time!
- "PACMAN' effects clearly visible, and exactly reproducible !!

Can we understand the observations?

- Try an analytical model (allows to study parametric dependences)
- Based on computation of beam-beam invariants and smear (W.Herr, D.Kaltchev; IPAC09) → backup slides
- Can compute invariants for individual long range encounters
 - Derive scaling laws for dynamic aperture (losses) etc.
 - Estimate PACMAN effects (loss pattern)
 - Find the "critical" long range encounters
- Results are in good agreement with expectations

Test of parametric dependence (separation, intensity)

- Recent test (2012) with $\beta^* = 0.60$ m, intensity: 1.6 10^{11} p/b
- \blacktriangleright Initial separation pprox 9 9.5 σ
- Losses start \approx 6 σ separation

Test of parametric dependence (separation, intensity)

- Recent test (2012) with $\beta^* = 0.60$ m, intensity: 1.2 10¹¹ p/b
- \triangleright Initial separation \approx 9 9.5 σ
- Losses start \approx 5 σ separation

PACMAN effects

- Due to different number of long range and head-on collisions expected:
 - > Systematic tune differences between nominal and PACMAN bunches
 - > Systematic orbit differences between nominal and PACMAN bunches
 - > Significant difference in tune spread (missing head-on)
- In LHC: alternating crossing scheme (horizontal and vertical crossing planes) removes tune difference by compensation for collisions in IP1 and IP5

- Different tunes and orbits

 (do we see a problem in 2012?)
- Very different tune spread(different number of head-on collisions: 0 4)
- → Frequently observe "selective" losses

 Loss of Landau damping ???

 (see: W. Herr, L. Vos; LHC Project Note 316, 2003)

- → Strong losses of selected bunches
- Out of 1380 bunches, 48 bunches without a head-on collision

- Out of 1380 bunches, 48 bunches without a head-on collision
- Losses appear without manipulation after long time in store

- No head-on collisions because of special filling scheme and luminosity levelling in IP8
- > Change of filling scheme (avoiding no head-on) immediately cured the problem.
- Head-on beam-beam by far the best tool for Landau damping:
 - Large tune spread in the <u>core</u> of the beam (unlike octupoles or long range tune spread)
 - Small tune spread in the <u>tails</u> of the beam (unlike octupoles or long range tune spread)

Strong-strong: coherent modes

- Coherent beam-beam modes have been observed colliding few bunches
- Provide high degree of symmetry
 - Demonstrated by analysis of sum and difference signals between bunches (X. Buffat, IPAC11)
 - > Symmetry breaking suppresses modes as expected (see: T. Pieloni, PhD thesis, 2008)
- But not (yet) a problem for operation

Coherent beam-beam modes

Courtesy X. Buffat

Signal without beam-beam collisions

Coherent beam-beam modes

- Sum and difference signals
- Clearly observed and identified coherent beam-beam modes

Luminosity levelling

- Luminosity levelling required already in 2011 (reduce luminosity and keep constant)
 - Achieved by transversely offset collisions (simple to do, very large range)
 - ightharpoonup Separation $pprox 4~\sigma$ (IP2) and pprox 0.5 1.5 σ (IP8)
 - > Routinely done without detrimental beam-beam effects
- But:potential loss of Landau damping! (if no other collision)
- Better: levelling with β^* (constant head-on tune spread) (see presentation G. Papotti)

Summary of observations

- Obtained large head-on tune shifts above nominal
 In daily operation: twice "nominal" value is standard
- Effect of long range interactions clearly visible (losses, dynamic aperture), no data yet on 25 ns spacing ..
- Number of head-on and/or long range interactions important for losses, strong PACMAN effects!
- All observations in excellent agreement with expectations and well understood (so far)

Perspectives after Long Shutdown 1:

(from beam-beam POV)

- Can we reach the nominal luminosity after LS1?
 - > Which parameters needed, which bunch spacing?
- Can we exceed the nominal luminosity after LS1?

 (until LS2, not in 2015)
 - > Which are the limits and constraints?
 - Which parameters are important?

Implications from head-on beam-beam:

- Can collide high intensities (good for luminosity)
- Unknowns (hopefully with input from 2012):
 - > Effect of noise
 - > Effect of bunch by bunch fluctuation
 - > Modulation effects
- \blacksquare For estimates: assume no limit on ξ
- In dedicated tests: reach pile up ≈ 70 per IP (Intensity $\approx 3 \ 10^{11}$, emittances $\approx 3 \ \mu m$)

Additional considerations

- Peak luminosity is not the full story
- Integrated luminosity is not the full story either
 - > Total beam intensity machine protection
 - > Event pile up in detectors

Pile up

Events per crossing for given Luminosity:

$$PU = \frac{1}{f_{rev}} \frac{\mathcal{L}}{n_b} \cdot 72 \text{ mbarn}$$

Assume pile up is limited to 42 events/crossing (twice nominal):

- $N_b = 1380$ (50 ns spacing): $\mathcal{L}_{max} = 0.9 \ 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- $N_b = 2520$ (25 ns spacing): $\mathcal{L}_{max} = 1.75 \ 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- → Close to or above nominal luminosity: 25 ns is required!
- Doubles number of long range, will be the main issue!

Implications from long-range beam-beam:

- Long-range beam-beam reduces dynamic aperture, i.e. losses and lower lifetime
- Scaling of the losses:
 - **Separation** $(\alpha, \beta^*, \epsilon)$
 - > Number of long-range encounters (but no experience with 25 ns)
 - Dependence on intensity: tests show good agreement
 with model → backup slides
- For estimates: extrapolate from 2011/2012 experience and model

Which crossing angle do we need?

For comparison \rightarrow always use normalized separation in the drift space (for small enough β^*):

$$d_{sep} \approx \frac{\sqrt{\beta^*} \cdot \alpha \cdot \sqrt{\gamma}}{\sqrt{\epsilon_n}}$$

- ightharpoonup Proposed (minimum) separation \approx 12 σ
- → Crossing angle α depends on β^* (in crossing plane)!
- → Smaller emittance ϵ_n allows smaller crossing angle α

Importance of emittance:

Scaling properties of emittance:

$$d \propto \frac{1}{\sqrt{\epsilon_n}} \qquad \mathcal{L} \propto \frac{1}{\epsilon_n} \qquad \Delta Q_{LR} \propto \epsilon_n$$
$$\alpha = \frac{d \cdot \sqrt{\epsilon_n}}{\sqrt{\beta^*} \cdot \sqrt{\gamma}}$$

- Difficult to lose with smaller emittance ...
- Emittance preservation should have high priority (in particular for 25 ns), e-cloud ??

(see related talks: V. Kain, G. Rumolo, B. Mikulec)

Low transverse emittances with 25 ns

- With reduced intensity and small emittance (see H. Damerau)
- Aim at:
 - $ightharpoonup pprox 0.7 1.0 \cdot 10^{11} \text{ p/b}$
 - ightharpoonup pprox 1.2 1.3 $\mu \mathrm{m}$
- Fewer bunches: $2808 \rightarrow 2520/2688$ (depending on filling scheme, 36, 48, 64, 72 b/train)
- Small emittances <u>very</u> profitable for LHC (beam-beam and luminosity)
- Nominal luminosity even with low total intensity ...

Other potential improvements:

- \triangleright Small emittances allow further squeeze of β^*
- $\beta^* = 0.4 \text{ m not out of reach}$ (but geometric loss ≈ 30 40 %)
- \triangleright Pseudo-flat beams (a la $Sp\bar{p}S$, 1982 1991):
 - \rightarrow $\beta_x^* \neq \beta_y^* \rightarrow$ e.g. (0.5,0.3) higher \mathcal{L} than (0.4,0.4)
 - \longrightarrow Crossing angle in plane with larger β^*
 - → squeeze further, (can avoid large crossing angle)
 - May simplify levelling with β^* i.e. luminosity increase, no change of crossing angle
- → Hope for tests this year ...

Summary (through the beam-beam eyes):

- Nominal luminosity clearly in reach (early!)
 - > Possible with conservative parameter sets (25 and 50 ns). For 50 ns at expense of high pile up.
 - For 25 ns reduced emittances, larger perspectives for improvement, emittance preservation important
 - \triangleright Levelling probably required (better with β^* ??)
- Twice nominal luminosity should be a reasonable target

- BACKUP SLIDES -

Beam-beam Orbit effects

- Strong beam-beam interaction with static offset produces dipole kick
 - > Orbit changes due to beam-beam kick
 - > Used for LEP: deflection scan
 - Expect strong effect for reduced separation
- What about orbits for PACMAN bunches?
 - > Different kicks different orbits
 - Cannot be fully compensated by alternating crossing schemes (but minimized and made symmetric)!

PACMAN Orbit effects: calculation

- → In regular operation: offsets expected at collision point
- Predicted orbits from self-consistent computation, here vertical IP1 (H. Grote, W. Herr, 2001)
- Cannot be resolved with beam position measurement, but ..

PACMAN Orbit effects: observation

- → Measurement of vertex centroid by ATLAS (IP1)
- Qualitatively: follows exactly predicted behaviour
- → Must be kept under control (sufficient separation)!

Luminosity levelling

- Luminosity in LHC experiments during levelling
- Luminosity very constant in IP8, no effect on other IPs

Smaller β^* - sure, but:

Luminosity for different β^* (round beams, constant intensity)

1.6

1.8

1.2

- Without and with crossing angle (for 10 σ), hour glass effect
- Small β^* require crab cavities (not for 2015)

beta* (m)

 \longrightarrow No point to go below $\beta^* = 0.4 \text{ m}$

0.6

0.4

8.0

0

0.2

What about pile up?

- Levelling, do we need it? If yes, how?
- For 50 ns, almost certainly yes, for 25 ns maybe.
 - Crossing angle: too small, requires change of collimators etc.
 - β^* : with constant crossing angle, successfully tested in 2012, would also ensure sufficient Landaua damping at all times ...
 - Transverse offset: IP1 and IP5 need much smaller offset! Not obvious ..

Strength of beam-beam interactions in the LHC

or: why do bunches behave differently?

W. Herr

With material from:

- [1] W. Herr, D. Kaltchev; LHC Project Report 1082 (2008)
- [2] W. Herr, D. Kaltchev; Contribution IPAC 2009 (2009)
- [3] A. Dragt; SLAC-PUB-2624 (1980)
- [4] W. Herr; CAS, Chios (2011)

Beam-beam strength

- In LHC a bunch can have many beam-beam interactions: head-on (4) and long-range (120).
- Which are important and which are not?
- Which ones need special "care"?
- **Look** at individual contributions
- Technique [1] extended to long range encounters [2]
- > Compute contribution of smear for each encounter

Beam-beam kicks (weak-strong)

Study effect of beam-beam encounters in weak-strong model, using (non-linear) transfer maps [3, 4]

$$M = \prod_{k=1}^{N_{IP}} e^{:F^{(k)}} : e^{:F_2^{(k)}} : = e^{:h}$$

- \triangleright N_{IP} number of collision points (head-on and long-range)
- $e^{:F^{(k)}:}e^{:F_2^{(k)}:}$ operators associated with (k-th) beam-beam kick and linear matrix (between k and k+1)
- $e^{:h:}$ is the non-linear one turn map, (eff. Hamiltonian, invariant)

Beam-beam kicks

Beam-beam potential $F^{(k)}(x)$ re-written from force f(x) [4]:

$$f(x) = \lambda \cdot \frac{2(x+d_x)}{(x+d_x)^2 + d_y^2} \cdot \exp\left[-\frac{(x+d_x)^2 + d_y^2}{2\sigma^2}\right]$$

 \rightarrow With $\lambda = \frac{N_b r_0}{\gamma}$ we write $F^{(k)}(x)$ as [4]:

$$F^{(k)}(x) = \int_0^x f^{(k)}(x')dx'$$

 $\rightarrow f^{(k)}(x)$ denote k-th encounter, $\rightarrow \lambda^{(k)}, d_{x,y}^{(k)}$ and $\sigma_{x,y}^{(k)}$

from now: using $d_{x,y}^{(k)}$ normalized to beam size $\sigma_{x,y}^{(k)}$

$$d_{x,y}^{(k)} \longrightarrow d_{x,y}^{(k)} / \sigma_{x,y}^{(k)}$$

Beam-beam kicks

Going to action angle variables, the integral $F^{(k)}(A, \Phi)$ becomes:

$$F^{(k)}(A,\Phi) = \int_0^1 \frac{dt}{t} \left(1 - e^{-t \left[\left(\sqrt{A} sin(\Phi) + \frac{d_x^{(k)}}{\sqrt{2}} \right)^2 - \frac{d_y^{(k)}^2}{2} \right]} \right)$$

we can expand as Fourier series (for later use):

$$F^{(k)}(A,\Phi) = \sum_{n=-\infty}^{\infty} c_n^{(k)}(A)e^{in\Phi}$$

- Can be solved numerically:
 - 1 Head-on $(d_{x,y}^{(k)} = 0)$: with Bessel functions (see: e.g. Chao, and [1])
 - 2 Long-range $(d_{x,y}^{(k)} \neq 0)$: through incomplete Γ function (see: Herr, Kaltchev, PAC09 [2])

Interlude (I):

What about the constant part of the kick (dipole, orbit kick)?

In tracking, subtract constant part (x = 0):

$$f^{(k)}(x) \implies f^{(k)}(x) - f^{(k)}(0)$$

we need now to compute the coefficients $c_n^{(k)}$ from modified potentials:

$$F^{(k)} \implies F^{(k)} - F_1^{(k)}$$

where $F_1^{(k)}$ is the linear part of $F^{(k)}$.

We have:

$$F_1 = \frac{2\sqrt{2A}\sin\Phi}{d^2} \cdot d_x \cdot (1 - \exp\frac{-d^2}{2})$$

with $d^2 = d_x^2 + d_y^2$

Interlude (II):

If you get bored:

What happens when we subtract the quadratic parts of the potential as well?

$$F^{(k)} \Longrightarrow F^{(k)} - F_1^{(k)} - F_2^{(k)}$$

with:

$$F_2 = \frac{2A \cdot \sin^2 \Phi}{d^4} \cdot \left[-d_x^2 + d_y^2 + (d_x^2 + d_x^4 - d_y^2 + d_x^2 d_y^2) \cdot \exp \frac{-d^2}{2} \right]$$

Would that be useful?

Good luck ..

Beam-beam invariant

The invariant h we get with the CBH formula:

$$h(A, \Phi) = -\mu A + \mu \sum_{k=1}^{N_{IP}} \frac{\lambda^{(k)}}{\epsilon} \tilde{h}^{(k)}(A)$$

for the individual contributions $\tilde{h}^{(k)}$ of encounters:

$$\tilde{h}^{(k)}(A) = c_0^{(k)}(A) + \sum_{n=1}^{m} \frac{(-1)^n n}{2sin(\frac{n\mu}{2})} \left[c_n^{(k)}(A)e^{in(\frac{1}{2}\mu - \mu^{(k)} - \Phi)} + c.c. \right]$$

and the coefficients $c_n^{(k)}(A)$ (remember the Fourier expansion):

$$c_n^{(k)}(A) = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\Phi} F^{(k)}(A, \Phi) d\Phi$$

Remarks:

Invariant away from resonances $(1, \dots, (-1)^n n) \longrightarrow (2, \dots, (-1)^n n)$

(because
$$\frac{(-1)^n n}{2sin(\frac{n\mu}{2})}$$
) \longrightarrow "exit invariant"

 \triangleright Use individual $\lambda^{(k)}$

Could model "poor men's simulation" with lumped interactions (not done here)

From the invariant to the smear

- The $\tilde{h}^{(k)}$ are the contributions of the k-th collision (head-on or long range)
- Use $h(A, \Phi)$ to express A as a function of Φ With $(A_0, \Phi_0) = (\frac{n_{\sigma}^2}{2}, \frac{\pi}{2})$ and $h(A, \Phi) = h(A_0, \Phi_0)$ since invariant: $\longrightarrow A(A_0, \Phi, \Phi_0)$
- \rightarrow The smear is the r.m.s. deviation of A from the mean
- Can compare the individual contribution of $\tilde{h}^{(k)}$ to the overall smear

Comparison: model and tracking

→ Invariant, model and tracking

Comparison: model and tracking

→ Smear: model and tracking (SIXTRACK)

Contribution of long range encounters

Individual contributions, 50 ns spacing

Contribution of long range encounters

Individual contributions, 25 ns spacing

Comparison with tracking

Comparison: model versus tracking (SIXRACK)

Dependence on spacing

Dependence on intensity (25 ns)

Strength of non-linearity for different intensity (nominal and half nominal)

Dependence on intensity (50 ns)

- > Strength of non-linearity for different intensity (nominal and half nominal)
- Less sensitive for 50 ns than for 25 ns (see backup slides)

Expected scaling laws: tune shift

Scaling laws for long range tune shift $\Delta \mathbf{Q}_{lr}$

Expected scaling laws: dynamic aperture

Scaling laws for long-range dynamic aperture DA

$$DA \propto \frac{1}{n_b}$$
 (number of bunches)
 $DA \propto \frac{1}{\sqrt{\epsilon}}$
 $DA \propto d_{sep} \propto \alpha$
 $DA \propto d_{sep} \propto \sqrt{\beta^*}$

 $DA \propto \frac{1}{N}$ (Intensity, still to be checked)

Summary

- Energy: 7 TeV
- **25** ns spacing
- Intensity: $\approx 1.7 \cdot 10^{11} \text{ p/bunch}$
- **E**mittance: 2.0 μ m, $\beta^* = (0.50, 0.35)$
- **Separation 10** σ
- $\rightarrow \xi_{bb} \leq 0.008$
- \rightarrow $\mathcal{L} \geq 4 \cdot 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (depending on filling scheme)

Stability from beam-beam

LHC parameters (2003), 25 ns, emittance 3.75 μ m

Left: HO + LR, Right: LR only

Losses in collision

- Collision pattern
- Lost bunches with (not even) single head-on collision only