Geant4 Geometry on a GPU
O

Introduction

O

GPU limitations

O

Platform: OpenCL/CUDA

O
* OpenCL

o Open source, freely available

Instruct the processing

o From the Khronos group
o Designed to work GPU, CPU and DSP

» CUDA
o Introduced by nVidia before OpenCL.
o Easy to understand C like syntax

g E:_tecute parallel
}= | ach core

Processing flow

on CUDA
o Macros

o Span OpenCL and CUDA - see work of Otto

Platform : Other

PTX Emulation

Ocelot Infrastructure

PTX Kernel

NVIDIA GPU

x86 Multicore

Previous Work: Otto Seiskari (2010)

O

» Port of core of Navigation exists
o 5 types of solids: box, orb, tubs, cons, polycone

o Physics volumes: only placements
o Has “normal” and “voxel” navigation

o Defines clones of Geant4 classes through structs.
» Without physics
» Uses Macros to span OpenCL and CUDA

typedef struct G4VPhysicalVolume

{
G4RotationMatrix frot;
G4ThreeVector ftrans;
GEOMETRYLOC G4LogicalVolume *flogical;
// The logicalvolume
// representing the
// physical and tracking attributes of
// the volume
GEOMETRYLOC G4LogicalVolume *flmother;
// The current mother logical volume
¥

G4VPhysicalVolume;

My Work: Goals

O

» Initially to simulate e- and Gamma particle
Interactions
Two implementations exist
We are in touch with the French team and have requested code
of gamma & e- physics
» New focus: voxel navigation — critical for HEP
to improve the performance of the navigation code.
extend the functionality to additional solids

Get existing code to run
Compilation errors
System —
ATI Mobility Radeon 5700
AMD APP SDK 2.7 with OpenCL 1.2 on Ubuntu 12.04
Error: kernel arguments can't be declared with types
bool/half/size_t/ptrdiff_t/intptr_t/uintptr_t/pointer-to-pointer:
__global G4VPhysicalVolume *worldVolumeAndGeomBuffer

My Work : First Steps

O

My Work : Debugging the code

O

» Code compiles with OpenCL 1.1
» Problem with pointers on GPU
C

PU GPU
.

X 0060 X0061 X0062

My Work : Debugging the code

O

» Solved the problem
o Relocation on GPU
« Move pointer offsets
« Calculate new addresses
o New way of getting address
« (int) starting_ buffer
« 64-bit compatibility doubtful

o Both methods confirmed to work
« Confirmation by testing

My Work : Creating Tests

O

» Testing procedure
o Allocate buffer on GPU
o Add test integers to struct definition
O Assign values to these ints on CPU
o Implement/Modify kernel
o Move these ints into buffer on GPU
o Transfer back
o Compare

» Even with tests, debugging with OpenCL can be hard

Created a set of tests

Check for Geometry —
Confirm offsets of pointers on GPU
Confirm density matches
PhysVol->LogicalVol->Solid->Material->Density
Check Distance —
Basic check.
Confirms step == distance moved

Automated with Macros
Tests are Solid basis for future improvements

Challenge-
Avoid overhead of Switch statement for solids (for “Virtual’ call)
Different threads cannot run different code
o To get performance all must work on the same type of solid

New algorithm-
Threads execute more common code
o Calculate steps, one solid type at a time.
Uses fast local (shared) mem
Implemented as a New type of navigation

Code tested and run with OpenCL 1.1 with AMD APP
SDK.

Code not yet tested for compatibility with CUDA

Code still has to be profiled to check for performance
gains.

Recently got access to an Nvidia GTX 680 card.
(courtesy Felice Pantaleo)
Was able to easily configure CUDA code to run.

Some discrepancies in results between the two
versions.

Even the legacy versions of the code have this error.

Normal navigation does not compile for both
platforms.

Algorithms may have to be altered
OpenCL can be challenging.
CUDA is more C-like

OpenCL and gpuocelot not easily debugged.

Challenges

O

The way forward

O

