Geant4 Geometry on a GPU

- DHRUVA TIRUMALA BUKKAPATNAM

Introduction

- Outline & goals of project
 - o Geant4 for GPU
- Overview of GPUs
 - o GPGPU paradigm
 - Stream processing
 - Uses kernels
- Starting point
- Testing
- Progress

GPU limitations

Avoid Conditionals

- As far as possible all threads must execute same code
- Threads dispatched in warps
- Within a warp, no threads will "get ahead" of any others

Memory transfer latency

- Global memory access slow
- Use shared (cache-like) memory and texture memory.

Platform: OpenCL/CUDA

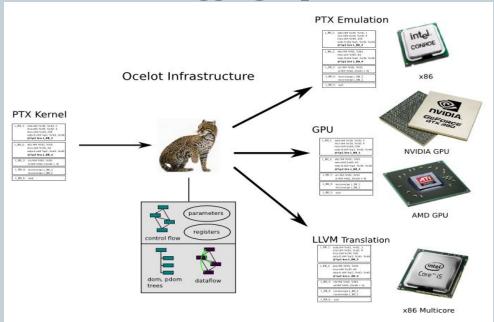
OpenCL

- o Open source, freely available
- From the Khronos group
- o Designed to work GPU, CPU and DSP

CUDA

- o Introduced by nVidia before OpenCL.
- Easy to understand C like syntax

CPU Memory opy processing data Instruct the processi Copy the result Memory for GPU Execute paralle GPU in each core (GeForce 8800) Processing flow on CUDA


Main

Macros

Span OpenCL and CUDA – see work of Otto

Platform: Other

- Gpuocelot
 - Emulate CUDA on other platforms
 - Still immature.
 - Potential advantages No rewrite; Debugging; Speed
- openMP, openACC ...

Previous Work: Otto Seiskari (2010)

- Port of core of Navigation exists
 - o 5 types of solids: box, orb, tubs, cons, polycone
 - o Physics volumes: only placements
 - Has "normal" and "voxel" navigation
 - Defines clones of Geant4 classes through structs.
- Without physics
- Uses Macros to span OpenCL and CUDA

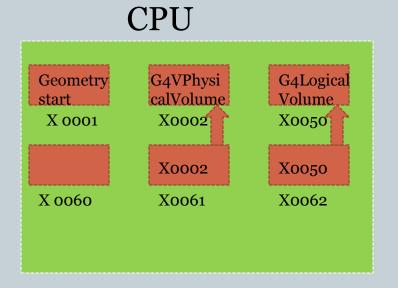
Previous Work: G4VPhysicalVolume

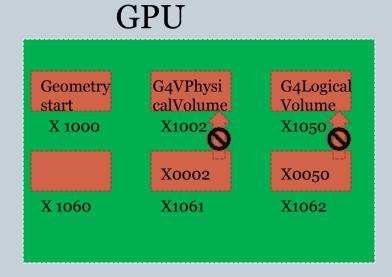
```
typedef struct G4VPhysicalVolume
    G4RotationMatrix frot;
    G4ThreeVector ftrans;
    GEOMETRYLOC G4LogicalVolume *flogical;
                            // The logical volume
                            // representing the
                             // physical and tracking attributes of
                             // the volume
    GEOMETRYLOC G4LogicalVolume *flmother;
                             // The current mother logical volume
G4VPhysicalVolume;
```

My Work: Goals

- Initially to simulate e- and Gamma particle interactions
 - Two implementations exist
 - We are in touch with the French team and have requested code of gamma & e- physics
- New focus: voxel navigation critical for HEP
 - o to improve the performance of the navigation code.
 - o extend the functionality to additional solids

My Work: First steps


- Get existing code to run
 - Compilation errors
 - o System -
 - × ATI Mobility Radeon 5700
 - * AMD APP SDK 2.7 with OpenCL 1.2 on Ubuntu 12.04
 - Error: kernel arguments can't be declared with types
 bool/half/size_t/ptrdiff_t/intptr_t/uintptr_t/pointer-to-pointer:
 global G4VPhysicalVolume *worldVolumeAndGeomBuffer


My Work: First Steps

- Code ran on another system
 - o Difference was in OpenCL version 1.1
- Specifications -:
 - o ATI Mobility Radeon 5xxx
 - o AMD APP SDK 2.5
 - OpenCL 1.1

My Work: Debugging the code

- Code compiles with OpenCL 1.1
- Problem with pointers on GPU

My Work: Debugging the code

- Solved the problem
 - Relocation on GPU
 - Move pointer offsets
 - × Calculate new addresses
 - New way of getting address
 - (int) starting_buffer
 - ★ 64-bit compatibility doubtful
 - Both methods confirmed to work
 - Confirmation by testing

My Work: Creating Tests

Testing procedure

- Allocate buffer on GPU
- Add test integers to struct definition
- Assign values to these ints on CPU
- Implement/Modify kernel
- Move these ints into buffer on GPU
- Transfer back
- Compare
- Even with tests, debugging with OpenCL can be hard

My Work: Automating Tests

- Created a set of tests
 - o Check for Geometry
 - Confirm offsets of pointers on GPU
 - Confirm density matches
 - PhysVol->LogicalVol->Solid->Material->Density
 - o Check Distance
 - **x** Basic check.
 - Confirms step == distance moved
- Automated with Macros
- Tests are Solid basis for future improvements

My Work: Optimisation

o Challenge-

- Avoid overhead of Switch statement for solids (for 'Virtual' call)
- × Different threads cannot run different code
 - To get performance all must work on the same type of solid

New algorithm-

- × Threads execute more common code
 - Calculate steps, one solid type at a time.
- ▼ Uses fast local (shared) mem
- Implemented as a New type of navigation

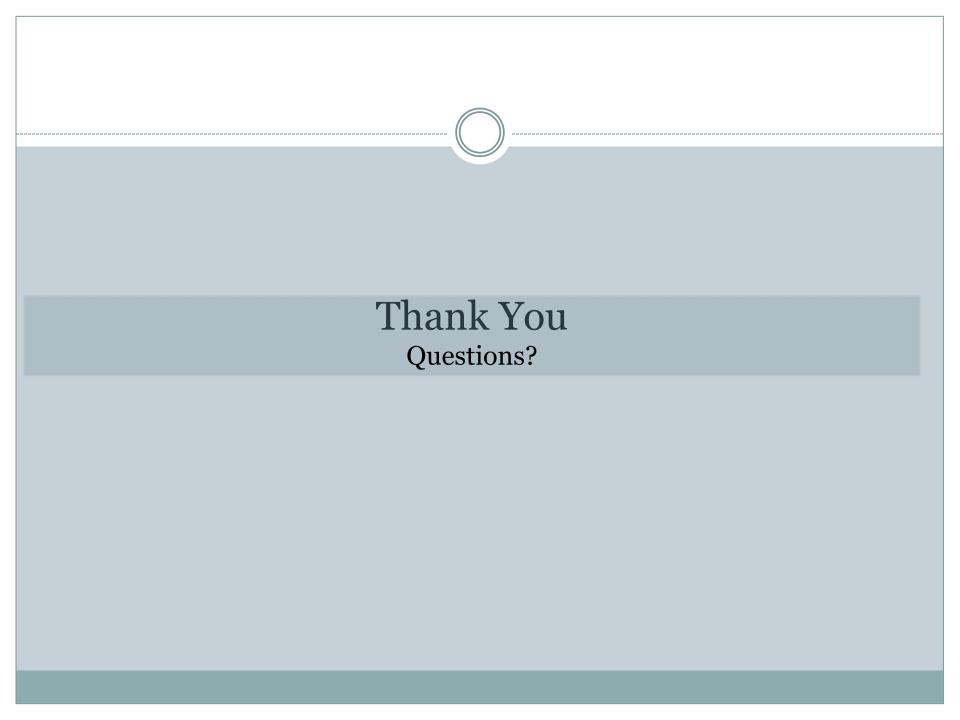
My Work: Optimisation

- Code tested and run with OpenCL 1.1 with AMD APP SDK.
- Code not yet tested for compatibility with CUDA
- Code still has to be profiled to check for performance gains.

My Work: CUDA v/s OpenCL

- Recently got access to an Nvidia GTX 680 card.
 (courtesy Felice Pantaleo)
- Was able to easily configure CUDA code to run.
- Some discrepancies in results between the two versions.
- Even the legacy versions of the code have this error.
- Normal navigation does not compile for both platforms.

Challenges


- Algorithms may have to be altered
- OpenCL can be challenging.
- CUDA is more C-like
- OpenCL and gpuocelot not easily debugged.

Challenges

- New tools from AMD should help ease the problem
 - Good support for Windows.
 - o gDebugger, APP Profiler ..
- Code not tested for
 - Compatibility with newer versions of OpenCL

The way forward

- The next steps for the project
 - o Support more (all?) of Geant4 geometry definition
 - More tests
 - Documentation
 - If the Physics definition from French team can be used, we might be able to run one complete example on the GPU

