

Subthreshold of meson production in nucleus-nucleus collisions

Krzysztof Piasecki for the FOPI Collaboration

Institute of Experimental Physics, University of Warsaw, Poland

- Production of ϕ at 1.5 .. 2A GeV: yields and slopes
- Systematics of data
- Summary and outlook

WARSAWUNIVERST

K. Piasecki (FOPI)

K. Piasecki (FOPI)

FOPI experimental setup

• Nearly 4π coverage

- Drift chambers: CDC, Helitron
 - ToF : Plastic Barrel, RPC

Forward: Plastic Wall, Zero Degree

Direct PID of π^{\pm} , K[±], p, d, t, ^{3,4}He

K. Piasecki (FOPI)

Ni+Ni @ 1.93A GeV

- □ First measurement: FOPI, 1995
- □ Trigger: 12% most central events

• Number of $\phi = 23 \pm 7 \pm 2$

- \bullet yield depends on Temperature, which was not found due to scarce statistics.
- □ But within T ∈ [70, 130] MeV, $P(\phi) = (1.2 .. 4.5) \cdot 10^{-3}$ (first estimate)

Ni+Ni @ 1.93A GeV

• ϕ yield per triggered event: (6 ± 1 ± 2) · 10⁻⁴

M. Menzel et al. (KaoS), PLB 495 (2000) 26 **h**/Np 0.002 K 0.001 T=94 MeV 0 -0.5 0.5 0 $\mathbf{y}_{\rm CM}$ K yield per triggered event: $(2.1 \pm 0.4) \cdot 10^{-3}$ $\frac{\phi}{K}$ $= 29 \pm 7 \pm 10\%$

K⁻ from KaoS, central collisions

14 ± 3 % of K⁻ originate from ϕ decays

Ni+Ni @ 1.93A GeV

□ Trigger: 50% most central events

- Number of $\phi = 210$ Significance = 9.6
- ϕ yield per triggered event: (4.4 ± 0.3) · 10⁻⁴

• K⁻/K⁺ ratio (in the measurable range) (3.32 \pm 0.07 \pm 0.13) \cdot 10⁻²

$$\frac{\Phi}{K^{-}} = 34 \pm 3 \pm 2.5 \%$$

$$17 \pm 2 \% \text{ of } K^{-} \text{ originate from } \phi \text{ decays}$$

Al+Al @ 1.9A GeV

Trigger: 9% most central events

- Number of $\phi = 108 \pm 15$ Significance = 7.4
- ϕ yield per triggered event: (3.3 ± 0.5 ± 0.6) · 10⁻⁴

15 ± 4 % of K⁻ originate from ϕ decays

Ar + KCI @ 1.756A GeV

□ Trigger: 35% most central events

K. Piasecki (FOPI)

Systematics of ϕ meson production

K. Piasecki (FOPI) International Conference

Summary and outlook

• At E_{beam} = 1.5 .. 2A GeV, ϕ mesons from five data sets were measured:

- FOPI: Al+Al and Ni+Ni (3 different centrality classes) @ 1.9A GeV
- HADES: Ar+KCI @ 1.756A GeV
- ϕ meson yields: $(0.3 .. 1.3) \cdot 10^{-3}$ per triggered event
 - \rightarrow P(ϕ) seems to scale with $\langle A_{\text{participants}} \rangle_{\text{b}}$
- $\frac{\Phi}{K^{2}}$ ratio seems to be stable $(\frac{1}{3})$ and independent from E_{b} , $<A_{part}>$.
 - About 15 .. 20% K⁻ originate from decays of ϕ
- First insights into the ϕ phase space:
 - \rightarrow Inverse slopes of ϕ : 80 .. 120 MeV

To-do:

- \rightarrow Final verification of ϕ data from Ni+Ni collisions
- → evaluation of systematic errors

Backup slides

Strangeness production and absorption

	K+	K-	φ
Production	$BB \rightarrow BYK^{+}$	$BB \rightarrow BBK^+K^-$	$BB \rightarrow BB\phi$
(primary)	$T_{pp \rightarrow p \wedge K+} = 1.58 \text{ GeV}$	$T_{pp \rightarrow ppK+K-} = 2.5 \text{ GeV}$	$T_{pp \rightarrow ppK+K-} = 2.6 \text{ GeV}$
Production	$\pi B \rightarrow Y K^{+}$	$\pi Y \rightarrow (\Sigma^* \rightarrow) BK^-$	$\pi B \to B \varphi$
(secondary)		$BY \to NK^-\Lambda$	$\rho B \to B \phi$
		$BY \rightarrow BBK^{-}$	$\pi N^\star \to N \varphi$
		$\pi B \rightarrow B K^{+} K^{-}$	$\rho\pi\to\varphi$
		$\phi \to K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$	$K^*K^- \rightarrow \phi$ <u>negligible</u>
Absorption	$K^{*}Y \rightarrow \pi B$	$K^{\text{-}}B \to \pi Y$	$\phi N \to K \Lambda$
Elastic scat.	$K^*B \leftrightarrow K^*B$	$K^{-}B \leftrightarrow K^{-}B$	$\phi N \to \phi N$
(char. exch.)	K⁺n ↔ K⁰ p	K⁻p ↔ K̄⁰n	

Yields from	Ni + Ni (1.93 GeV)
B + B	3.5×10^{-4}
$\pi + B$	2.9×10^{-4}
$\rho + B$	8.9×10^{-4}
$\pi + \rho$	1.6×10^{-4}
$\pi + N(1520)$	0.5×10^{-4}
Total yield	1.7×10^{-3}
H.W. Barz et Nucl. Phys. A	al. (BUU) , 705 (2002) 223

[B] = *p*, *n*, *N*, *N*[∗], ∆

 $[Y] = \Lambda, \Sigma$

φ/K⁻ within the statistical model approach

Examples of mixing of different sources of K-

• ϕ influences investigation of U_{KN} potential

• K⁻ flow and ϕ flow mix together

First \phi's from Ni+Ni : 1995 session

- Ni+Ni @ 1.93A GeV (A. Mangiarotti)
 - → Trig: 12% most centr. ($<A_{part}>=86$) → $N_{\phi} = 23 \pm 7 \pm 2$

 $\rightarrow P_{\phi}$ / collision : depends on T_{ϕ}

 T_{ϕ} =130 MeV \rightarrow (**1.2** ± 0.4 ± 0.6) · **10**⁻³

First (but only) ϕ data published:

A. Mangiarotti et al, NPA 714 (2003) 89

Phase space of \phi mesons

K-/K+ ratio for Ni+Ni from FOPI and KaoS

M. Menzel et al. (KaoS), Phys Lett B 495 (2000) 26

Azimuthal anisotropy of Kaons from Ni+Ni @ 1.93A GeV

K. Piasecki (FOPI)