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J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’ s Sons, New York, 1902; Yale University Press, New Haven, (1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] to have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many cases
in which the energy can decrease without limit, as when the system
contains material points which attract one another inversely as the
squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).



Enrico FERMI Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
Is true If the energy of the system is the sum of the energies
of all the parts and If the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are in
contact. The surface energy can generally be neglected
only if the two substances are not very finely subdivided,
otherwise, it can play a considerable role.



ENTROPIC FUNCTIONALS
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TYPICAL SIMPLE SYSTEMS: N
Short-range space-time correlations e'g" W(N) o lu (lu > 1)

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry
Short-range many-body interactions, weakly quantum-entangled subsystems
Linear/homogeneous Fokker-Planck equations, Gausssians

- Boltzmann-Gibbs entropy (additive)

-> Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS: [ o J§/(N) o N” (p > 0)

Long-range space-time correlations

Non-Markovian processes (long memory), Additive and multiplicative noises
Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry
Long-range many-body interactions, strongly quantum-entangled sybsystems
Nonlinear/inhomogeneous Fokker-Planck equations, g-Gaussians

- Entropy Sq (nonadditive)

- g-exponential dependences (asymptotic power-laws)



ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive 1f, for any two probabilistically independent
systems A and B,

S(A+B)=8(4)+S5(B)
Therefore, since

S (A+B)=S_(A)+S (B)+(1-¢q) S (A4) S, (B),
S, and S fe”y '(Vq) are additive, and S , (Vg #1) is nonadditive .

EXTENSIVITY:

Consider a system 2 = 4, + 4, +...+ 4,, made of N (not necessarily independent)
identical elements or subsystems 4, and 4,, ..., 4.
An entropy 1s extensive 1f

0< lImm S(NV)
N —oo N

<oo, e, S(N)ec N (N — o)



EXTENSIVITY OF THE ENTROPY (N — )

IfW(N)~p" (u>1)

= S,,(N)=k,InW(N) <N  OK!
IfW(N)~N” (p>0)

= S (N) =k,In W(N)e<[W(N)]™" oc NP
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IMPORTANT:  u" >>v¥ >>N? if N>>1
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso' and Constantino Tsallis>
'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008; revised manuscript received 16 May 2008: published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L%, Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of g # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCL" . Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index gq.



SPIN %2 XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

N-—
M= [(1+7)67070 + (1=2)d]67, 1 +2)57]

=1
7 =1 — Ising ferromagnet

O0< |y| <1 — anisotropic XY ferromagnet
Y =0 — isotropic XY ferromagnet

A = transverse magnetic field

L = length of a block within a N — o chain

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)
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Using a Quantum Field Theory result
in P. Calabrese and J. Cardy, JSTAT P06002 (2004)

we obtain, at the critical transverse magnetic field,

V9+c® -3

C

qent —

with ¢ = central charge in conformal field theory

Hence
: . . 1
Ising and anisotropic XY ferromagnets = c = > = q,, = J37-6 =0.0828
and
Isotropic XY ferromagnet = ¢=1 = ¢, = J10-3 =0.1623

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)



(d=1; T=0)

(pure magnet with critical transverse field)
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(random magnet with no field)
A Saguia and MS Sarandy, Phys Lett A 374, 3384 (2010)
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D. Prato and C. T., Phys Rev E 60, 2398 (1999)
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On a ¢-Central Limit Theorem
Consistent with Nonextensive
Statistical Mechanics
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Generalization of symmetric a-stable Lévy distributions
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CENTRAL LIMIT THEOREM

N _scaled attractor F(x) when summing N — oo q -independent identical random variables

with symmetric distribution f (X) with o, = de X[ f(x)]° /de [£(X)]° (Q 2g-1,q, = ;+q }

qg=1 [independent] gzl (e, O=2q-1 #1) [globally correlated ]
F(x)=G,(x) =G, (1+a1) (x) with same o, of f(x)
o < F(x) = Gaussian G(x), G(x) if | x<<x,(q,2)
0 with same oy of f(x) q( ) - f(x)~C, /|x|2/(q—1) if | x> x.(¢,2)
(a=2)

Classic CLT with lim__,, x.(q,2) =e°

S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)

F(x) = Levy distribution L,(x) F(x)=L,, ., with same |x|— e asymptotic behavior
with same |x| — oo behavior . 2(1—2‘1()1—_0;()3—61)
G2(1—Q)—a(1+q) a(x) - Cq,a/ [ x
: 2(1-q)~e(3-q)
Op = G(x) (intermediate regime)
O<a<d)y ) Thksxta| 1 .
e ~c, a1t G (x)— CF /| x [(He/(Hrag—e)
. 20qg—o+3 2 q,x
if |xp>x.(L,o) o+l
with lim,,_ , x, (l,0) = oo (distant regime)

Levy-Gnedenko CLT ‘
cvy-nedenko S. Umarov, C. T., M. Gell-Mann and S. Steinberg

J Math Phys 51. 033502 (2010)
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Group entropies, correlation laws, and zeta functions

Piergiulio Tempesta”
Departamento de Fisica Tedrica I, Facultad de Fisicas, Ciudad Universitaria, Universidad Complutense, E-28040 Madrid, Spain
(Received 15 February 2011, revised manuscript received 3 May 2011, published 10 August 2011)

The notion of group entropy is proposed. It enables the unification and generaliztion of many different
definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis.
Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes
of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed.
The mathematical structure underlying our construction is that of formal group theory, which provides the
general structure of the correlations among particles and dictates the associated entropic functionals. As an
example of application, the role of group entropies in information theory is illustrated and generalizations of the
Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions
is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.
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COLD ATOMS IN DISSIPATIVE OPTICAL LATTICES:

RAPID COMM

PHYSICAL REVIEW A 67, 051402(R) (2003)

Anomalous diffusion and Tsallis statistics in an optical lattice

Eric Lutz
Sloane Physics Laboratory, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
(Received 26 February 2003: published 27 May 2003)

We point out a connection between anomalous transport in an optical lattice and Tsallis® generalized statis-
tics. Specifically. we show that the momentum equation for the semiclassical Wigner function which describes
atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland
[Phys. Lett. A 245, 67 (1998)]. The important property of these ordinary linear Fokker-Planck equations is that
their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index

¢ in terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of
the atomic wave packets is discussed.

(i) The distribution of atomic velocities is a g-Gaussian;

(i) g=1+ 4?]& where E, =recoil energy
0

U, = potential depth
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Tunable Tsallis Distributions in Dissipative Optical Lattices

P. Douglas, S. Bergamini, and F. Renzoni

Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, United Kingdom
(Received 10 January 2006: published 24 March 2006)

We demonstrated experimentally that the momentum distribution of cold atoms in dissipative optical
lattices is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing
the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is
possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail
distribution at shallow optical potentials.




Experimental and computational verifications
by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006)
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CONSERVATIVE MC MILLAN MAP:

’xn+l — yn

Vn |
2I

EY,
Ty,

yn+l :_xn+2ﬂl

U # 0 & nonlinear dynamics

G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)



(u,e)=(1.6,1.2)

W=2) e =2")

FI1G. 10.  Structure of phase space plot of Me. Millan perturbed map for parameter values o = 1.6
and ¢ = 1.2, starting form a randomly chosen initial condition in a square (0,107%) x (0, 1079),

and fori=1...N (N =210 213 N16 N18) jterates.

G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)
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G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)



CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS
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SHEAR IN GRANULAR MATTER: AIP Conf Proc 1542, 453 (2013)

Experimental evidence of ‘“Granulence”

Gaél Combe*, Vincent Richefeu*, Gioacchino Viggiani*, Stephen A. Hall',
Alessandro Tengattini* and Allbens P.F. Atman™

“UJF-Grenoble 1, Grenoble-INP, CNRS UMR 5521, 3SR Lab., B.P. 53, 38041 Grenoble Cedex 09, France.
"Lund University, Division of Solid Mechanics, P.O. Box 118, SE-221 00 Lund, Sweden
**Departamento de Fisica e Matemdtica and National Institute of Science and Technology for Complex Systems,
Centro Federal de Educagdo Tecnolégica de Minas Gerais, CEFET-MG, Av. Amazonas 7675, 30510-000, Belo
Horizonte-MG, Brazil
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FIGURE 2. Particles displacement (maximum displacement
= 46mm) in a sheared 2D granular assembly made of 2000
wooden rods. The granular packing is enclosed by a rigid frame
initially rectangular (0.56m x 0.47m). A speckle of black and FIGURE 4. Probability density function (pdf) of normalized

white points is painted on each cylinder to allow the measure- flyctuations V, projected on the horizontal direction for two
ment of particle kinematics by means of the PIT technique.  4iffarent strain windows Av=2x%102and Ay = 10!
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Thermostatistics of Overdamped Motion of Interacting Particles

J.S. Andrade, Jr.,'” G.F.T. da Silva,! A. A. Moreira,' F.D. Nobre,>” and E. M. F. Curado®>

lDepartamenta de Fisica, Universidade Federal do Ceard, 60451-970 Fortaleza, Ceard, Brazil
2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
3National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil
(Received 8 August 2010; published 22 December 2010)

We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simula-
tions, that the overdamped motion of interacting particles at T = 0, where T is the temperature of a
thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For
sufficiently high values of 7, the distribution of particles becomes Gaussian, so that the classical
Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system
displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a
linear combination of Tsallis and Boltzmann-Gibbs entropies.
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PRL 105, 022002 (2010) PHYSICAL REVIEW LETTERS 9 JULY 2010

£

Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons
in pp Collisions at \/s =7 TeV

V. Khachatryan ef al.™
(CMS Collaboration)
(Received 18 May 2010; published 6 July 2010)
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