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Atlas* 
≈ 25 HI people 

CMS* 
da Vinci style 

≈ 60 HI people 

Alice*: L3 magnet 
≈ 1,000 HI people 

LHCb 
p-Pb only * heavy-ion capability 
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2. Stopping: Net protons/baryons and gluon saturation 

Artwork: UFRA 

At RHIC (≤ 0.2 TeV) and LHC (≤ 5.52 TeV) energies, initially a state of 
very high gluon density is formed, which transforms into a strongly 
coupled quark-gluon plasma, and then hadronizes after ≈10-23 s into 
mesons and baryons.  

Search for signatures of the QGP, and the initial Gluon Condensate in 
net-baryon (proton) distribution functions. 
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Stopping occurs mainly through the interaction of valence quarks with gluons 
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  Gluon structure functions grow with increasing Q2 and 1/x 

  At small x and high energy, gluons dominate the dynamics.  

  The gluon distribution should saturate at very small x. The 
saturation scale is  

Structure functions (pdfs) 
from e + p deep 
inelastic scattering (DIS) 
at HERA (DESY)  

Q

2
s(x) ⇠ A

1/3
x

��
,� ⇠ 0.3

Saturation effects should be more pronounced in nuclei  
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Microscopic formulation of baryon transport  
for RHIC, LHC physics 
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The contribution of the valence quarks in the forward moving nucleus  
to the rapidity distribution of hadrons is then (integration over pT):  

Where the transverse momentum transfer is       ,  
the longitudinal momentum fraction carried by the valence quark 
is  

and the soft gluon in the target carries 

  
Valence quarks  Gluons  
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The differential cross-section for valence quark production with rapidity y 
and transverse momentum pT in a high-energy heavy-ion collision is   
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then the rapidity distribution can be written as a function 
 of a single scaling variable τ 

Y. Mehtar-Tani and GW, Phys. Rev. Lett. 102,182301 (2009).       
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Perform a change of variables 
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Net-baryon rapidity distributions at 
                       SPS, RHIC, and LHC 

 Central (0-5%) Pb+Pb (SPS) and Au+Au (RHIC) 
   Collisions 

 Dashed black curves:       = 0.08 GeV2 , λ=0 

   Solid red curves:               = 0.07 GeV2, λ=0.15 
   Dotted black curves:         = 0.06 GeV2, λ=0.3 

 A larger gluon saturation scale produces more 
   baryon stopping, as does a larger value of A. 

 The saturation scale is                                        

Y. Mehtar-Tani and GW, Phys. Rev. Lett. 102,182301 (2009).       
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Net-baryon rapidity distributions at 
                       LHC: prediction 

 Central (0-5%) Pb+Pb collisions,  

 Dashed black curve: λ= 0 
   Solid red curve:        λ = 0.15 
   Dotted black curve:   λ= 0.3 

 A larger gluon saturation scale produces  
   more baryon stopping; the fragmentation 
   peak position is sensitive to λ 

 The midrapidity value of the net-baryon  
   distribution is small, but finite: 
   dN/dy (y = 0) ≈ 4. The total yield is normalized  
   to the number of baryon participants, NB ≈ 357. 

Measurements with particle identification will be 
confined to the yellow region for the next years  
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Y. Mehtar-Tani and GW 
Phys. Rev. Lett. 102,182301 (2009) 

Particle identification region in ALICE 
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Conclusion 2: Stopping 

 In a QCD-based microscopic model, we have calculated the net-
baryon transverse momentum and rapidity distributions for heavy 
systems at RHIC and LHC energies. 

 LHC: The model allows (in principle) to determine the gluon 
saturation scale from data on the mean rapidity loss, or from the 
position of the fragmentation peaks of net-baryon distributions in 
future forward-physics experiments. 
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R (y,t)  Rapidity distribution function. The standard linear Fokker-Planck equation 
            corresponds to q = 1, and a linear drift function. For the three components 
            k = 1,2,3 of the rapidity distribution, 

Linear drift term with relaxation time τy           Diffusion term, Dy=const. 

Relaxation time and diffusion coefficient are related through a  
dissipation-fluctuation theorem. The broadening is enhanced due to 
                                                                        collective expansion. 

Linear Model: G. Wolschin, Eur. Phys. J. A5, 85 (1999); with 3 sources: Phys. Lett. B 569, 67 (2003); PLB 698, 411 (2011); 
                        M. Biyajima, M. Ide, M. Kaneyama, T. Mizoguchi, and  N. Suzuki, Prog. Theor. Phys. Suppl. 153, 344 (2004)  

       mean value 
variance 
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Pseudorapidity distributions of produced particles are obtained through the 
Jacobian transformation 

with the rapidity distribution  
in the three-sources model 

and the rapidity  

 GW, J.Phys. G40, 045104 (2013)  
 D. Roehrscheid,  GW, Phys. Rev. C86, 024902 
                                                                (2012) 
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Prediction GW in PLB 698, 411 (2011) Central PbPb @ 2.76 TeV 

Prel. ALICE data 
(QM Annecy 2011)  

RHIC data 
(PHOBOS) 
130 and 200 GeV 

GW, J. Phys. G40, 045104 (2013) 
dN/dη (η≈0) = 1584 ± 4 (stat.) ± 76 (sys.) [1] 
                        1601±60                              [2] 

[1] ALICE collab., PRL 105, 252301 (2010) 
[2] ALICE collab., PRL 106, 032301 (2011) 
[3] B.B. Back et al.,PHOBOS coll., PRL 87,  
102303 (2001); PRL 91, 052303 (2003); 
PRC 83, 024913 (2011) 
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GW, preprint 2013 
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Data: M. Guilbaud et al., 
ALICE Coll., Nucl. Phys.  
A 904-905, 381c (2013) 
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GW (Nov 2010, submitted to  
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Centrality 0-5% 
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GW, J. Phys. G40, 045104 (2013) 
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Centrality 0-5% 
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Central source 

Fragmentation 
sources  

⇠ s0.44NN

⇠ log(sNN/s0)



ICNFP_2013 19 19 19 19 19 

pp=  4 TeV/c  

Calculation: GW, J. Phys. G40, 045104 (2013) 
Midrap. data: ALICE collab., PRL 110, 032301 
(2013) 

Min. bias 5.02 TeV pPb @ LHC 

ycmbeam = ⌥ ln(
p
sNN/m0)

= ⌥8.586

p
sNN =

s
Z1 ⇤ Z2

(A1 ⇤A2)
⇤ 2pp = 5.02TeV
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Conclusion 3: Particle production 
 Charged-hadron production at RHIC and LHC energies has been 

described in a Relativistic Diffusion Model (RDM). 

 Predictions of pseudorapidity distributions dN/dη of produced 
charged hadrons in the 3-sources RDM at LHC energies rely on the 
extrapolation of the diffusion-model parameters with ln(√sNN)  

 In agreement with a QCD-based microscopic model, the contribution 
of the fragmentation sources from quark-gluon collisions at LHC 
energies is very small at midrapidity, but substantial at larger values 
of pseudorapidity η.  

 Between RHIC and LHC energies, the midrapidity gluon-gluon source 
becomes more important than the fragmentation sources. 

of the three sources has been 
investigated in direct comparison with the preliminary

20 
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CMS Collab., CMS-PAS-HIN-10-006 (2011) 

Υ suppression as 
a sensitive probe for  
the QGP 

  No significant effect 
      of regeneration 

   mb≈ 3mc            cleaner 
      theoretical treatment 

  More stable than J/ψ 

EB(Y1S) ≈ 1.10 GeV 
EB(J/ψ) ≈ 0.64 GeV 
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CMS Collab., PRL 109, 222301 (2012) 
[Plot from CMS database] 

RAA(Y(2S)) = 0.12 ± 0.04 (stat.) ± 0.02 (syst.) 

RAA(Y(3S)) = 0.03 ± 0.04 (stat.) ± 0.01 (syst.) 

 1. Y(1S) ground state is suppressed in PbPb: 

  RAA (Y(1S)) = 0.56 ± 0.08 ± 0.07 in min. bias 

A clear QGP indicator  

2. Y(2S, 3S) states are > 4 times stronger 
       suppressed in PbPb than Y(1S) 
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   Debye screening of all states involved: Static suppression   

  The imaginary part of the potential (effect of collisions)  
     contributes to the broadening of the Y(nS) states: damping 

  Gluon-induced dissociation: dynamic suppression,  
     in particular of the Y(1S) ground state due to the large 
     thermal gluon density 

   Feed-down from the excited Y states to the ground state  
     substantially modifies the populations: indirect suppression 
       F. Vaccaro, F. Nendzig and GW, Europhys.Lett. 102, 42001 (2013)  
            F. Nendzig and GW, Phys. Rev. C 87, 024911 (2013)  
            F. Brezinski and GW, Phys. Lett.B 70, 534 (2012)  
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Screened potential: rD Debye radius, αs
s
 ≥ 0.4 the strong coupling constant 

                                at the soft scale αs
s
 = αs(<1/r>(T,E,Γ)) 

                                accounting for short-range Coulomb exchange, 
                                 σ ≈ 0.192 the string tension  (Jacobs et al.; Karsch et al.) 
Imaginary part: Collisional damping (Laine et al. 2007, Beraudo et al. 2008,  
                              Brambilla et al. 2008) for 2πT >>  <1/r>; different form  
                              for 2πT <<  <1/r>. 

= mD, Debye mass 



ICNFP_2013 

Starting from the Schoedinger equation with complex potential V(r,T) for the wave functions ψ(r,T), 

From: F. Nendzig and G. Wolschin 
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Radial wave functions (abs. values) of Y(1S, 2S, 3S) – red, green, blue – for T = 0 (left) 
and T = 200 MeV (right). The Υ(1S) groundstate is very stable against screening for T < 4.1 TC 

the numerical solution of the radial equation 
[H(r, T,↵s)� E + i�/2]g(r) = 0 becomes 
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Born amplitude for the interaction of gluon clusters according to 
Bhanot&Peskin in dipole approximation  / Operator product expansion, 
extended to include the screened coulombic + string eigenfunctions 
as outlined in Brezinski and Wolschin, PLB 70, 534 (2012)  

for the Gluodissociation cross section of the Y(nS) states, and 
correspondingly for the χb(nP) states. 



ICNFP_2013 F. Brezinski and GW, PLB 707 (2012) 534 /  
F. Nendzig and GW, Nucl. Phys. A 910-911 (2013) 458 
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Dependence of the local temperature T on impact parameter b, time t, 
and transverse coordinates x, y (Bjorken scaling for the time evolution): 

with the nuclear overlap (thickness function) TAA (b,x,y). 

The number of produced        pairs is proportional to the number 
of binary collision, and the nuclear overlap 

Suppression factor due to the medium (without feed-down): 
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Relative initial populations in pp computed  
using an inverted cascade from the final  
populations measured by CMS and CDF(      ) 
[Nfinal(1S):=1] 
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  Screening (potential model) 

  Collisional damping (imaginary part of potential)                            

  Gluodissociation (OPE with string tension included)  

 Feed-down from excited states 

tF: Y formation time 
tQGP: QGP lifetime 
Tmax @ tF: 200-800 MeV 

tF= 0.1 fm/c 
tQGP= 4, 6, 8 fm/c 
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See talk by PhD student 
F. Nendzig today at 6:30 p.m. 
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Leaves room for additional 
suppression mechanisms 
in particular, for the excited 
states. 

  Screening (potential model) 

  Collisional damping (imaginary part of potential)                            

  Gluodissociation (OPE with string tension included)  

 Feed-down from excited states 

tF: Y formation time 
tQGP: QGP lifetime 
Tmax @ tF: 200-800 MeV 

tF= 0.1 fm/c 
tQGP= 4, 6, 8 fm/c 
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