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Statistical QCD shows
3 color deconfinement,

3 hot quark-gluon plasma,
for T' > T¢;

but it does not tell us
what thermometer can measure temperature

to identify a hot, deconfined medium.

Only measurable observables are observables.



What can we use as QGP Thermometer?

hadron abundances = hadronization stage of QGP

3 probe of earlier hot QGP,
not accessible to direct measurements?
3 a similar problem in astrophysics:

How does one measure temperatures of stellar interiors?

photons from plasm.a core are emitted, plasma of
absorbed by atoms in crust, lead to electrons, protons 4_|
absorption lines in stellar spectra and photons atoms
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e absorption lines indicate presence of atomic species
e absorption strength gives temperature of stellar interior

Conjecture: Quarkonia are the spectral lines of the QGP
Matsui & HS, 1986

3 no crust of QGP, but d early hard production of quarkonia

they’re there when QGP appears, and its effect
on different quarkonium states tells how hot the QGP is.
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e quarkonia are very unusual hadrons
— very small:
Ty =~ 0.25 fm, ry ~ 0.14 fm <K Agep ~ 1 fm
— very tightly bound:
2Mp — My, ~ 0.64 GeV 2Mp — My ~ 1.10 GeV

— survive deconfinement, exist in QGP up to some T

e quarkonia melt in hot QGP through color screening,

ro(TIVO g/ T4

gluon dissociation

— when screening radius rp(7)
becomes smaller than
binding radius r;,

quarkonium state 7z melts;

melting points determine

temperature, energy density of QGP



Challenge to theory: quarkonium dissociation temperatures?

e potential theory: large mg — NR Schrodinger eq’n
1
{ZmQ — —V*+V(r, T)} ®;(r,T) = M;®;(r, T)
mq

heavy quark lattice studies — heavy quark binding
free or internal energy to specify potential?

e direct lattice studies: measure correlator
Gi(t,T) = / dw o;j(w,T) K(w, 7,T)

invert integral transform to get spectrum o;(w,T);
G;(1,T) not known for enough values of 7;
maximum entropy method (MEM) — most likely result.

tentative result: state | J/¢¥ x| ¥ | ¥ |xo| X |x,| X
[Ding et al., 2012] T,/T.|1.5-2.0/1.1|1.1|>4.0|1.8|1.6|1.2|1.2




e recent NRQCD studies
with temperature scan
for Y [Aarts et al., 2012]

e apply to nuclear
collisions;
production scheme in pp
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Find:
— fixed partitioning of total cc into open and hidden charm

— fixed partitioning of hidden charm into different charmonia

Ohh—J/(8) = Gee—/yp Ohh—ce(S) (color evaporation)

— fixed partitioning of open charm into different D etc.

OhhopD+(8) = gp+ orn_ce(s) (statistical hadronisation)

— observed J /1 receives feed-down from higher excitations

60 % direct (1S), 30 % from x.(1P), 10 % from ’(2S)

similar pattern for bottomonia; basic question:

how are these pp features modified in AA collisions?



NB: the production dynamics in AA collisions is different
from that in pp collisions !

e initial state effects
pdf modification (shadowing, antishadowing)
energy loss of incident parton (gluon)

e final state effects
energy loss of primary cc
cold nuclear matter effect on (nascent) charmonium

secondary matter effect on (nascent) charmonium

previous analysis procedure:

e measure production in pp and pA
determine pdf modification (shadowing, antishadowing)
determine parton energy loss
determine cold nuclear matter effect
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e construct model for AA
scale pp by number of collisions
incorporate initial & cnm final state modifications

e compare to AA data: is there anomalous behavior?

34 something not accounted for by model? — inconclusive

Theoretical Scenarios

® sequential suppression

color screening dissociates % '

charmonium states in QGP % |

first higher excited § 29 (P a9
states (2S), (1P), 2 - L

s(éS) é(lP) £(19
then ground state (].S) Energy Density
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e statistical enhancement

all primary charmonia dissociated

. . . E’ ~ secondary production
at high collision energy, 3 viastatistical combination
Q
o
overabundance of charm quarks ol S
o
equilibration, c¢ excess survives S | thymal suppression
&; of grimary producton
hadronisation by statistical 5
H
combination Energy Density

What is J/v production probability?

— both scenarios claim that presence of medium modifies the
relative fraction of cc¢ going into charmonia, vs. open charm;

— neither says anything about how many cc pairs are produced
in AA relative to scaled pp.
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more explicitly:

e if the total number of cc pairs produced in AA collisions
is reduced by a factor two relative to scaled pp rates, but
as before, 90 % go into open charm, 10 % into charmo-

nia, then there is neither suppression nor enhancement of
J /1 production;

e the crucial question is what happens to the produced cc
pairs, not how many there are to begin with; the medium
can only affect those that are there.

Conclude:

the correct calibration is hidden to open charm, so that the
relevant observable is

sy = (ML) (Npp<J/w))

N 4(cc) N, (cc)
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If measured over all phase space, in
Naa(J/¢¥)/Naa(cc),
initial state effects cancel out, can check if different from

Npp(J /) /Npp(ce)

i.e., if the medium has had an effect on charmonium binding.

Using “nuclear modification factors”

Raa(J/P) = Naa(J /) /neNpp(J /1)
Raa(cc) = Nya(cc)/neNpy(cc)
Raa(J/Y)

correct J /1 production probability thus is S/, = Ran(ct)
aa(cc
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NB: the often used observable R4(J /1) alone

is at best inconclusive, at worst misleading:
have to compare open to hidden charm!

Look at data — illustration only so far, kinematics...
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LHC Data
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Data from ALICE & CMS: J/4) vs. open charm production at intermediate & high transverse momenta
(thanks to Zaida Conesa del Valle)

in AA, as many cc pairs make J /1 as in scaled pp,
but there just are fewer now to begin with

here neither J/1 suppression nor enhancement; low Pr?
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RHIC Data
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Data from PHENIX & STAR: J/4) vs. open charm production at high & low transverse momenta
(thanks to Torsten Dahms)

at high pr, as at LHC;

at low pr, up to 80 % J /1 suppression:
here 4 no medium effect on cc production,
only on charmonium binding.
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Complementary aspect: so-called “RHIC puzzle”
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Could it be that there are just fewer c¢ pairs produced
at forward than at mid rapidity?
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Check by looking at open charm production in pA collisions
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Rapidity dependence of open charm production in pA at 800 GeV, with parametriztion op4 = A% pp.
(thanks to Mike Leitch)

The puzzle seems not so puzzling with correct calibration;
but need to check quantitatively
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Additional Probe: excited vs. ground state

ratio of excited to ground state in AA: Y(1S5) : Y(25) : Y(35)

does the presence of a medium change this from pp?
initial state effects cancel here as well; example
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Clear evidence of sequential suppression
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...see CMS paper.



Conclusions

Measurements of hidden/open heavy flavor production,
measurements of excited/ground state quarkonium production
in pp, pA, AA
can provide model-independent answers

to model-independent questions.
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