INTERNATIONAL MASTERCLASSES HANDS ON PARTICLE PHYSICS

www.physicsmasterclasses.org

LHC Data to School Children

Uta Bilow, TU Dresden

What is a Particle Physics Masterclass?

- As in a masterclass in the arts, students work with an expert.
- Expert = particle physicist.
- Instead of, say, a violin, the subject is particle physics data analysis.

Concept of IMC

- High school students (15 19)
 are "scientists for one day"
- Get invited to a research institute or university
- Introductory talks (standard model, detectors, accelerators)
- 2 h measurement with LHC data
- International video conference
 (2 5 inst. + CERN/Fermilab)

Motivation

- Why Masterclasses?
 - Make modern particle physics data available to students
 - Let students explore fundamental forces and building blocks of nature
 - Demonstrate the scientific research process
 - Stimulate students' interest in science
 (proven in refereed evaluation Physics Education 42 (2007)
 636-644)
 - offer authentic experience and add valuable experiences to physics education at school
 - Inform students about the new age of exciting discoveries in particle physics

Brief History

Allows 10 to 40 to to

- Idea from UK, 1996 (R.Barlow et al.)
- 2005: Adopted by EPPOG/IPPOG for all Europe
- IPPOG International Particle Physics
 Outreach Group http://ippog.web.cern.ch/
- Use of LEP data
 - OPAL Identifying Particles
 - DELPHI Hands on CERN
- 2006: U.S. joined program (QuarkNet)
- 2011: LHC-based Masterclasses only

Running in 37 countries!

New countries in 2013:

Romania Turkey

Cyprus Palestine

Egypt Australia

Participation Statistics

In 2013:

- 10.000 students
- 130 institutes + 30 in U.S. program
- 37 countries

Sample Agenda

LOCAL TIME: ACTIVITY:

8:30 - 9:00 registration & welcome

9:00 - 10:00 introduction to Particle Physics

10:30 - 11:30 second talk or tour

12:00 - 13:00 lunch

13:00 - 15:00 data analysis, including introduction

15:00 - 16:00 local combination and discussion

16:00 - 17:00 video conference with CERN or Fermilab

Learn to identify particles

- Onion-like detectors
- Characteristic patterr for each particle type

Introduction to Particle Identification

Event examples from ATLAS W path

6000 events can be analysed by students (50 per group of 2 students) = 6 institutes with 40 students each

Measurements done by counting

Comparison with ATLAS results http://arxiv.org/abs/1109.5 141.pdf

Total	41	34	45	31	316	58
$\Sigma W^+ .\Sigma W^- $	W+	86	[W-]	65	W+ + W-	151
Ratio	T	W* / W		1.32	±	0.22
\$1000 \$1000 B	e W -> lnu	and 2/game	2011): na* -> II pro	oduction cre	llaboration (ss sections in proto	n-proton
with the ATLAS det lyly decay mode us 1.7 fb - 1 of data coll *) Authors: The ATLAS *) Authors: The ATLAS	ector*) and ing lected with LAS Collabo	the ATLAS d	letector at v	√s = 7 TeV ** Dec 2011):)	
with the ATLAS deb lvlv decay mode up 1.7 fb-1of data coll *) Authors: The ATI	ector*) and ing lected with LAS Collabo	the ATLAS d	letector at v mitted on 5 Aug 2011)	√s = 7 TeV ** Dec 2011):) http://arxiv.arg F-2011-134	ww
with the ATLAS det lyly decay mode us 1.7 fb - 1 of data coll *) Authors: The ATLAS *) Authors: The ATLAS	ector*) and ing lected with LAS Collabo	the ATLAS d tration (Sub- cration (24	letector at v mitted on 5 Aug 2011)	√s = 7 TeV ** Dec 2011):)	ww cand.
with the ATLAS det h/w decay mode us 1.7 fb-lof data coll *) Authors The ATL Abs/1100-51616 **) Authors The ATL Abs/1100-51616	ector*) and ing lected with LAS Collabo	the ATLAS deration (Subseration (24)	letector at v nutted on 5 Aug 2011) + V	√s = 7 TeV ** Dec 2011); : ATLAS-CON) http://arxiv.arg F-2011-134	0.0000000000000000000000000000000000000
with the ATLAS det h/w decay mode us 1.7 fb-lof data coll *) Authors The ATL Abs/1100-51616 **) Authors The ATL Abs/1100-51616	ector*) and ing lected with LAS Collabo	the ATLAS direction (Subscription (24 W er	letector at v nutted on 5 Aug 2011) + V	√s = 7 TeV ** Dec 2011); : ATLAS-CON) F-2011-134 Background 21930	cand.

Measurements with LHC data

- ATLAS
 - –W path (Higgs → WW)
 - –Z path (discover Extra Z' Bosons)
- CMS
- ALICE
 - Looking for StrangeParticles
 - $-R_AA$
- in the future: LHCb, TOTEM, ...

More details in the following presentations

And: TONIGHT!

Demo session. Try it!

- Expanded possibilities for students
 - More interactive e-learning tools as event displays
 - -Options to do more than counting
 - Data quality investigations
 - Measurement of distributions in mass, angle etc.
- Follow up closely, what the scientists are doing
 - –2011: Exploit known Standard Model Processes, e.g.
 - W+/W- ratio corresponding to (uud) quarks ir proton
 - Understand mass peaks of J/Psi and Z
 - -2012: On the way to discover new particles
 - Higgs → WW
 - Extra Z Bosons

• ..

How to discover the Higgs via WW decay

A Higgs signal would accumulate at small values of $\Delta \phi_{II}$

Students' histogram

E-learning Platforms and Tools used

- ATLAS
 - Minerva (M.Wielers, P. Watkins, T. McLaughlan et al) based on ATLANTIS http://atlas-minerva.web.cern.ch
 - Hypatia (C. Kourkoumelis et al.) based on ATLANTIS http://hypatia.phys.uoa.gr
 - Under construction: Amelia (M.Barnett, J. Pequenao) http://amelia.sourceforge.net

iSpy online (M.Hategan, K. Cecire et al.) in collaboration with Quarknet (US) www12.i2u2.org/elab/cms/event-display

 ALICE masterclass application (P.Debski, Y.Foka et al.) simplified ALICE event display in ROOT environment

RPC Rec. Hits

Hadronic jet

H

http://aliceinfo.cern.ch/static/Pictures/pictures_High_Resolution/MasterClassWebpage.html

Video conference (with CERN or Fermilab)

- 16:00 17:00 Geneva time
- 3 5 institutes, reflecting international collaboration
- 2 Moderators at CERN
- Agenda
 - Introduction
 - Combination of results
 - Student Q & A
 - Discussion
 - Quiz

Refereed evaluation on Int. MC

- severity: just right
- success independent of a-priori knowledge and gender

Most important correlation

- Understanding the scientific research process
- generates interest in (especially modern) physics

Organisation and Funding

- Central organisation at TU Dresden for IPPOG Michael Kobel (Project leader), Uta Bilow
- Coordination Fermilab-based MCs (America, Far East, Australia)
 Ken Cecire
- Steering group
- WG Video conference
- Contributions from:
 - Oslo University (Farid Ould Saada, M. Pedersen, M. Bugge et al.)
 - Quarknet (K. Cecire et al)
 - ALICE (Yiota Foka et al
 - •
- Funding and in-kind contributions from:

Conditions for participation

- a group of students (aged 16 19)
- an inviting institute, providing the infrastructure
 - a lecture hall
 - several PC's available
 - if possible a room for a video conference
- at least 1 scientist, holding the lecture
- some tutors for students during the measurement (1 tutor per 10 students, knowing particle physics)

No financial requirements!

 Further: Translation of at least one measurement into local language, if not existing so far see: www.physicsmasterclasses.org/index.php?cat=physics

Contacts

- Central Organisation at TU Dresden, Germany
 Coordinator: Uta Bilow <u>uta.bilow@physik.tu-dresden.de</u>
- Your National Responsible
 See: Your Country at www.physicsmasterclasses.org/index.php?cat=country
- www.physicsmasterclasses.org
 For more information

Beyond International Masterclasses

all data is free to use for any educational purpose (not only in the framework of International Masterclasses)

- 1. International Masterclasses
 - organized by E/IPPOG since 2005
 - once / year daily for 4-5 weeks
 - students come to institutes worldwide
 - video conference at the end of the day
- 2. Local masterclasses at universities
 - without video conference
 - if date within IMC period not possible
 - if institute wishes to organize more Masterclasses
- 3. Local masterclasses at schools
 - Researchers bring data to school, science center, ...
 - Also stand-alone by teacher possible
 - National activities (Germany, I2U2, etc)

