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Summary 
    

1. Overview of the physics of doubly strange systems  
a) Exotic atoms  
b) Doubly strange hypernuclei , 
c) Double hypernuclei  

2. Strangeness in PANDA: LL  hypernuclei  
a) Production of  S= -2  with antiprotons  
b) The 2ðtarget technique  
c) Antiproton beam and expected rates  

3. Work in progress  
a) Targets and detectors design, prototypes and tests  
b) Simulation and reconstruction  
c) Opportunities for simultaneous measurements  



New Frontiers in Strangeness Physics: 

S=-2 Systems 
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3 different systems contain double strangeness (S = -2) 

Doubly Strange Hypernucleus :  
a X- hyperon is captured inside a nucleus 

 (X- hypernucleus) 

Exotic Hyperatom :   

a X- hyperon is captured in an atomic orbit 
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Double Hypernucleus :  
 a nucleus is made by nucleons and   2 Lõs 
  (LL hypernucleus) 
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What is new in X- hyper-atom? 
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Hadronic atom, sensitive to E.M. + strong forces 
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      Formation of X- atom 
 

ÅX- captured in a high atomic level (å n0ã(mX/m e) ) 
 

Å  Atomic cascade Ą  X rays emission  Ą precise mass measurements 
 
Å  In a low level nabs:  
Å atomic orbit overlaps  periphery of nucleus,  
Å nuclear interaction shifts and broadens the level, 
Å due to broadening, X- is absorbed into the nucleus  

Only shift and width of  the  last level  
(nabs ) of the cascade can be measured 

Å Test  of  models  
Å parameters for 

(Optical) Potential  



Status of art  of  X- hyper-atom data 
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Absorption n level in hadronic atoms 
(from Friedman&Gal, P.Rep. 07)
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X- and W-  are completely missing 

 

Why? 
Difficult X-  production  

followed by  stop  

DATA:    p- , K- , p, and  S- data 

cover the whole periodic table 

(nabs increases with Z & mass) 



What is new in X- hyper-nucleus? 
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Physics with X 
ï 
 Hypernuclei: 

 

ÅNuclear structure : spectroscopy Ą nuclear potential  

 
X -N  strong interaction 
Å short range: 2s-quarks come into play  

Å long range: bosons exchange  (Remarks: in OBE: 

X N Ą X N : no strange (I=1/2) meson, all I=0,1 exchanged (w, h , p, r ...) 

X N Ą LL coupling: only strange meson exchange (k ...) 

ÅIn medium effects: change of  Y-mass , effects on magnetic moment é 

ÅX -N  weak interaction  

Å Non Mesonic Weak Decay:    X p Ą L n (EL=95 [MeV], pL,N=469):  

          X N Ą S N (ES =55 [MeV],pS,N=366): 

   In nuclei: expected suppressed by strong interaction,  GLN  å 0, GSN  å 0  
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 What  happens in neutron stars ( L- rich matter)?  
does òPauli blockingó suppress strong interaction  X N Ą LL ?  



Status of art  of  X- hyper-nucleus data 
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 Dover&Gal:Ą attractive well VX=21
 

24 MeV 

Other measurements:  
 

üX- + N: sel Ò 28mb   (X- produced in (K-,K+), with  p(K-)=1.66GeV/c)         

(Ahn06,PLB633) 

                     

ü X-  + nucleus: mean free path in nucleus  å 4.7fm  (p(X-) = 0.6GeV/c )      

(Aoki98NPA644) 

            

ü  K- + 12C Ą K+  + 12BX :              (Khaustov00,PRC61) 

12C(K-,K+) XB
12    
Ą VX å14 MeV   ( AGS ï E885,2000) 

SCIFI(K-,K+) XA
Z  Ą VX å16 MeV      ( KEK ï E224)   

]/[89)8( srnb
d

d
K º<

W

¯q
s

Each point : single observation, no statistics  



What is new in LL hyper-nuclei ? 
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Important short -
range interaction  

Physics with LL
 
 Hypernuclei: 

 

ÅLL  strong interaction (only possible in double hypernuclei ) 
Å YY potential: attractive/repulsive? 

Å  short range:  interaction of  2 s-quarks 

Å long range: bosons exchange  (Remarks: in OBE: 
  LL Ą LL : only  non strange, I=0  mesons (w,h...) ) 

Å  Hyper-fragments distribution:  

 dependence  on YY potential and on X- nuclear level 
 

Å  Strong decay: LL Ą H particle? (H = uuddss, strongly bound) 

 If YES, dominant on weak decay?  
 

ÅWeak interaction: several channels, mesonic and non mesonic 

ÅLL  weak interaction  (only possible in double hypernuclei ) 
 

Hyperon Induced Non Mesonic Weak Decay 
 

Å LL  Ą L n : (expected GLn  << Gfree  ) (pL/N  =  433 MeV/c)  

Å LL  Ą S-p : (expected GSp  << Gfree  ) (pS/N   =  321 MeV/c)  



Status of art  of LL hyper-nucleus data 
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Some questions: 
Å Coherent data ? 

Å DBLL is constant with A?  

 (Expected decreasing) 

Å DBLL is attractive or repulsive? 

Å BLL is increasing with A? 

LL hypernuclei strong interaction 

LL 
 
hypernuclei  weak interaction 

Å a lot of channels: mesonic, non mesonic, hyperon induced, mixed, but: 
 

 NO DATA  
Needs of:  high statistics, several nuclei  



S= -2 Systems Physics: Summary 
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PANDA aims to investigate:  LL Hyper-nuclei 
 

by Intense Antiproton Beam  to get    High Statistics   in  Several Nuclei 

 

ÅX- Hyper-atom  Ą interplay between Coulomb and nuclear 
potential in the peripheral nuclear matter 

 

 

 

ÅX- Hyper-nucleus Ą peculiar aspects of the strong and weak 
interaction: X- N potential, Non Mesonic Weak Decayé 
 

 

 

ÅLL Hyper-nucleus Ą peculiar aspects of the strong and weak 
interaction: LL  potential, H-Dibaryon, Hyperon Induced 
Non Mesonic Weak Decay of  LL é 

 



Production of LL Hypernuclei 
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X- hyperon  is produced by antiproton in:  

 pbar + p Ą   X+  +  X-               pbar + n Ą   X0bar  +  X- 

 Threshold  @  å 2.65 GeV/c 

If a nuclear target is used:  

  quasi free reactions  

  X- can re-scatter in residual nucleus, strongly decelerating 

 

X- exits from the nucleus: 

 goes to stop in ordinary matter (if doesnõt decay!) 
 is absorbed in a nucleus 

 interacts with a proton: X- pĄ LL  

If LL stick to the nucleus: LL hypernucleus is formed 



Antiprotons @FAIR 
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Å Proton acceleration in LINAC to 70 MeV  
Å Multi - turn injection into SIS18  
Å Transfer of 4 SIS pulses to SIS100  
Å Acceleration to 29 GeV and extraction of single 

bunch 
 

Å Antiproton target and separator for  3GeV  (3.7 
GeV/c) antiprotons  

Å Collection and precooling in the Collector Ring (CR): 
rate=10^7 pbar /s  

Å Transfer to users (HESR)  
Å Storage and acceleration of antiprotons in the 

range: 1.5 15 GeV/c  

Momentum  range: 1.5 ï 15 GeV/c 

Production rate: 1x107antiproton/s 



Choosing Antiproton Momentum for X- 
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 s(3 GeV/c) = Max   (very few data) 
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Ref.[pink].Kaidalov96. 

Ref[blue]Musgrave65 

p  production threshold =  3.1 GeV/c 

X- production rate depends also on: 
 

ÅExperimental setup : target  sizes and material 

ÅAntiproton beam: intensity, antiproton production rate, beam cycle 

- 

antiproton momentum =  3 GeV/c 

X- X+   threshold  =  2.65 GeV/c 



S = -2 Systems Production by Antiprotons 
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p Xbar +N Ą Kbar+ Kbar +p + é [tagging X production Ą trigger ]  

Elastic scattering in nucleus: strong slowing down  

slowing down in matter 

(with decay)  
p 

N 

Xray 

g (28 MeV) 

L 

L 

L+L decay 
(MWD,NMWDé ) 

X- p ĄLL  

conversion 
+LLsticking  

X- capture into atomic 
levels and hyperatomic 
cascade 

Capture into nucleus: 

Strong and Coulomb 

forces  



Two-target  Technique  at PANDA 
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Set-up for Hypernuclei @ PANDA 

F. Iazzi         ICNFP2013- Crete 9/2/2013 

Beam 

 spot 

(from A. Sanchez, PANDA Meeting, Sept. 2012) 

To detect: 
  

Å  ˊ±, K±,  

Å  ɔ, p,  X, 

Å  fragments (?) 



3 Basic Problems of Hypernuclear  Set-up 
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1. Efficiency of the Slowing down of X- in nuclear matter:  
Å expected rates  of stopped X ï   

Å expected  LL hypernuclei  
2. HPGe  performances in fringing magnetic field:  
Å Resolution 
Å Stability in long time operation  

3. Interaction between internal òsolidó target and 
antiproton beam:  
Å Beam structure  
Å Primary target features  

 



1: X- Slowing down in nuclear matter 
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Primary 12C 

target  

Secondary 12C target  

Antiproton 

beam 

Efficiency calculated by MC 
 

Ingredients: 

Å Very thin wire as primary)target  

Å Homogeneous 12C as secondary target) 

Å Slowing down inside the residual nucleus by 

nuclear scattering (INC-like model) 

Å Slowing down and stop by ionization   

Å Atomic capture + Atomic cascade 

The ratio RX of stopped to produced  X- has been evaluated: 

(In the real set-up (smaller and inhomogeneous secondary target, 

slightly larger beam pipe, é) a å 40% reduction is expected)  

RX å 2.2Ā10
-3 

A fraction (roughly 5%) of stopped X- produce LL (from old experiments ):  

RLL/X å 5Ā10
-2 



2:  HPGe  inside the fringing field 
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*  resolutions : variation within 10% 
*  efficiency :  no variation 
*  performances : stable along 1 year    

 FWHM vs g  energy 

High precision ɔ and X ray spectroscopy require good performances of 

HPGe assembly even inside the fringing magnetic field (<0.5 T) 

Test performed on HPGe in 0.8T magnetic 

field with different ɔôs energy showed: 

HPGe crystals can operate inside the fringing field 
safely and with high performance   



3: Time structure of the antiproton beam  
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Beam cycle of  HESR   
 

1. injection of 102 bunches (108 pbar each ) into HESR from 

CR, without target, in 1000 s : 1010 pbarós total bunch 

2.  preparation of the beam : 10-15 s 

3. Target insertion , data taking , bunch  depletion  

4. Target  switched off, inverse preparation  : 10-15 s 

5. Refilling HESR in 103s      (Ą 1.) 

Bunch is depleted by:  
a) Single Coulomb Scattering (~Z2) 

b) Hadronic interactions (~A2/3) 

c) Energy Straggling (negligible) 

d) Touschek Effect  (negligible) 

Solid target quickly 
destroys the beam  

H pellet target density: 4 ×1015 at/cm 2 

Diamond target density: 5 ×1018 at/cm 2 



3: Antiproton beam spot and target 
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f t, 

Upstream-downstream  view of the target 

Overlapping target with beam spot tail: 

Å  small bunch fraction interacts with target 

Å bunch is slightly consumed 

Å this fraction determined by max ann. rate 

Slowly steering the spot  tail onto the wire target  
Å  the rate of interacting pbar is maintained  constant 

Å the rate of produced  X- remains constant 

Radial Gaussian distribution of pbars in the bunch 

Beam steering technique Ą X-  production rate å 100 /s   Ą 
Ą LL production rate å 10-2 /s  (å2.5 x104/m)  

 

[Efficiency / channel å10-3/ ch Ą 50-100 detected 1 -channel -LL in 4m] 



Work in progress 
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Set -up construction & software:  
  

Work is in progress  



Work in progress: Internal Target &Shifter 
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Tests under proton beam 
Å Homogeneity and purity (B.S.) 

Å No phase modification (mR.S.) 

Å Good mechanical resistance  

Å Good thermal and electric conductivity 

Courtesy of A.Sanchez&S.Bleser 

Prototype of internal target  

(sizes: 13mm x 100mm x 3mm)  

Storage of spare targets 
(shifter: under study) 

Problems  
Å Cutting into C-shape  

Å Brittleness for asymmetry  

Problems  
Å Vacuum leakage 

Å Lubricant  sublimation 

(piezo-motor?) 



Work in progress: Secondary Active Target 
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Design of  Active Target (MC) 

3 side sectors,  made of:  

Å Alternate layers absorber-mstrip 

Å 3 absorbers: 9Be, 10,11B, 12,13C   

1  Sector  prototype  

Under test: 
Å Read-out space 

Å Minimizationof material budget 

Courtesy of 

A.Sanchez&S.Bleser

&SERSTII 



Work in progress: HPGe 
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Single crystal performances in magnetic field: OK 

Activities toward a prototype of HPGe 

Cluster Array 

MC study of the cluster geometry for: 
Å Tests on radiation damage  

Å Tests on pile-up  

Å Analysis of the pulse shape 

Encapsulated HPGe . 

crystals 

Electronics 

chamber  

X-Cooler Head, 

partially hidden 

inside the 

electronics 

chamber  

ElectroChemical Cooler system  

(under study,  to save space) 

Courtesy of A.Sanchez,M. Steiner&I.Kojouharov 



Work in progress: final state reconstruction 
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Reconstruction mainly consists of : 
(Courtesy of A. Sanchez) 

ÅTrack finding&Tracking:(Kalman & 

GEANE)  

ÅPID: Energy loss in: Si m-strips (pions, 

protons, ligth fragments)  in STT& SciTil, 

(Kbarôs for trigger) 

 

Using detectors: 
ÅSi m-strips in secondary target: 

tracking (+ energy loss for PID?) 

ÅTOF system : time of track  

(improvements under study) 

ÅSTT : Energy loss ĄPID  (Kôs) 

ÅHPGeôs : gôs, X-rays 

p  + p  correlation  Event reconstruction,  
also using g in 
coincidence  



Simultaneous measurements: exotic atoms 
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In PANDA: X-ray emission from X- atom can 

         be measured ( for free)  by HPGe 

 X - Hyper-atoms are formed as  

intermediate state of the LL formation process 
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Hypernuclei too are formed as  

intermediate state of the LL formation process 
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Å In PANDA:  X N Ą X N :  final state 

reconstruction? (needs high statistics) 

Å X N Ą X N :  final state reconstruction 

(needs high statistics) 



Conclusions 
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Å The physics of doubly strange systems presents interesting aspects 

concerning: 

Å  the strong interaction (YY, X-nucleus) 

Å  the weak interaction (mesonic and non-mesonic decay) 

Å The present world data collection is very poor:  
Å few units of LL and X hypernuclei and no X hyper-atoms 

Å PANDA: set-up dedicated to LL hyper-nuclei  

Å Highlights of PANDA:  
Å Hyperon production by antiprotons @ 3 GeV/c 

Å Intense antiproton beam together with the  ñsteering techniqueò 

Å Double target system (Ą flexible choice of hyper-nuclear targets) 

Å High resolution g detection  in coincidence with p detection 

Å Expected results: 
Å High statistics in single channels for  different hyper-nuclei 

Å X-hyper-nuclei and hyper-atoms could be investigated too  



Reference slides 
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New Frontiers in Strangeness Physics: 

S=-2 Systems 
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NUCLIDES & HYPERNUCLEI  

Å Danysz & al claim double 
hypernucleus   in ô63 

Å Jaffe  proposes H, a system of 
deconfined  uuddss, inõ77 

Exotic  X-  atoms 

Neutron  Stars  



LL Hypernuclei & Astrophysics 
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Hypernuclear data provide valuable input to nuclear astrophysics 

  

I. YN &YY couplings give information Ą emergence of  Yôs 

Å  in the core of neutron stars 

Å  in the cooling behaviour of massive neutron stars 

 

II. Non-mesonic weak decays of hyperons in a dense medium 

control the bulk viscosity of neutron star matter, regulating 

the r-modes instability of pulsars and their emission of 

gravitational waves 

III.  if the hyperon-hyperon potential is suitably attractive: new 

class of hyperon stars can be formed  



Strange Particle Production in the  

PANDA energy range 
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F. Iazzi ,  EXA08 - Vienna,  

September 15-18 
9/2/2013   -   32 

Hyperonic atoms production: HA1 

 S stopping time at pk =50 

MeV/c: 

  

Å In Pb:¢ 2.5 10-11 [s] 

Å In Fe:¢ 2.0 10-11 [s] 

Å In C: ¢  5.9 10-11 [s] 

S 
-
:  M = 1.19734 [GeV/c2]; t = 14.82.10-11 [s]; S = -1 X 

-
:  M = 1.32132 [GeV/c2]; t = 16.39.10-11 [s]; S = -2 

 X stopping time at pk =1.8 

GeV/c: 

  

Å In Pb:¢ 13.3 10-11 [s] 

Å In Fe:¢ 12.7 10-11 [s] 

Å In C: ¢  33.2 10-11 [s]  Experiments with S-   

Å K- brought to stop in LH2 

Å S- brought to stop in LH2 and solid 

target thin foils (W, Pbé) 

Å Sigma-onic atoms formed in solid 

targets 
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H-dibaryon mass 

ZHZ AA 2-

LL +­

ÅH particle  : di-baryon (B=2) 

system (de-confined  uuddss) 

 

ÅDouble Hypernuclei can 

decay by strong interaction 

 

 

If M(H) << M( L),  decay into H is  
strongly dominant with respect 
weak decay 

      lifetime å 10-18 ð 10-20 [s],  
(Kerbikov,SJP,1984)   

He6

LL B(H) å 30 -40  [MeV]  
(Takahashi et al, ArX2011March) 

Observation of weak decay  
Puts strong limitations on 

M(H) (>2M(L)-B(LL)  )  



 X- hyper-nuclei (I) 
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Non Mesonic Weak Decay:  

Å X N Ą L N (EL=95 [MeV],pL,N=469):  L sticking? Nucleon ejected: GLN =? 

Å X N Ą S N (ES =55 [MeV],pS,N=366):   S sticking? Nucleon ejected: GSN =? 
 

ÅMesonic Weak Decay: X- Ą L p- (EL =9.1[MeV] pp,L=143): no Pauli blocking  

p 

p 

X- 

n 

n 

Physics (II):   X -N  weak interaction  



 LL hyper-nuclei (I) 
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 LL  weak  interaction   
(only possible in double hypernuclei ) p 

L 

L 
n 

n 

 

Hyperon Induced Non Mesonic Weak Decay 
 

Å LL  Ą L n : (expected GLn  << Gfree  ) (pL/N  =  433 MeV/c)  

Å LL  Ą S-p : (expected GSp  << Gfree  ) (pS/N   =  321 MeV/c)  
 

 Calculations in absence  of  H :    GLN , GSN    small 

 
(TakahashiNP2003,ParrenosPR2002, ItonagaNP2001) 



Physics with LL  hypernuclei: status of art (II)  

9/2/2013 

LL 
 
hypernuclei  Weak decay: a lot of final states, new B.R. 

MESONIC WEAK DECAY OF 1 L  
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LL Hypernuclei  Production  using  K- 
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Up to now all DSS experiments used K- beams (1.66, 1.8 GeV/c) 
Å Using reaction: K- + p (in nucleus) Ą K+ + X- 

threshold: pK- å1.1 [GeV/c] ; pX å 0.5[GeV/c]  (unlikely sticking X-) 

Å In the 1960ôs:  first observations in bubble chambers, emulsions 

 (measuring B.E. only) 

 

Recently: counter experiments 
 

Å KEK-E176:  emulsion target (X- production&stopping) + spectrometer (K+ tagging) 

Å KEK-E224:  SCIFI active/passive target 

Å KEK-E373:  SCIFI active/passive target. Still analyzing data 

 

Å AGS-E885:  emulsion target (X- production)+ spectrometer (K+ detection) for 

C12(K-,K+) XBe12 reaction 

Å AGS-E885, E906:  diamond target (X- production&stopping) + scintillator array (n 

detection) for C12(K-,K+) LLB
12+n reaction, X-  hyper-nuclei confirmation, ratio LL 

hyper-nuclei to stopped X-ós determined 
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Antiproton beam:  @FAIR 

Expected performance @ HESR: 

Å Generation of intense antiproton 

beams 

Å Wide energy range:  

1.5 -15 GeV/c  antiprotons 


