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(Anti-)hydrogen and CPT

* \/ery precise spectroscopic technigues can be used

V1s_2s(H) = 2466 061413187035 (10) Hz [Nature 229, 110 (1971)]
vyrs(H) = 1420405 751.7667 (0.0010) Hz [PRL 107, 203001 (2011)]

e Quite well understood theoretically
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Summary

e The ALPHA/AD-5
experiment

e Positron spin resonance
In trapped antihydrogen

* Applications and outlook

[Detai of the benr 70 plaqe]



Antiproton Decelerator
» Multiple experiments / technologies
- H 1S-2S spectroscopy [ALPHA, ATRAP-H]
- H HFS spectroscopy [ALPHA, ASACUSA-H + AEgIS]
- H gravitational fall [AEgIS, (GBAR)]
- p magnetic moment [ATRAP-p, (BASE)]
- p/e mass ratio [ASACUSA-pHe + theory]

ATRAP H(trap) p =
s ,'_'T T Th{ _..I : - T T'I'l I
o et LR g
@ , -ﬁ ? > Lyl { ﬁ'-., | ALPHA: H(trap)} A
J ASACUSA: H (beam), pHe [sx @ E !M’S'EIJF“ =

l _T i
=
T
S ol .
} £
i e I



The ALPHA apparatus

Vacuum

» Combined charged particles w™" ==
(Penning-) and neutral atoms .
(loffe-) trap@B__=1T |

- H production via pte*+e*— H +e”
|G. Gabrielse et al., PLA 129, 38 (1988)]

- Trap H in a 0.54K magnetic
potential well (U=-u -+ B)

Mirror cails
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Producing a s
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ample of trapped H

* p and e* gently mixed in nested

Penning trap

* Three-body recombination mostly

results in highly excited H atoms

- Long confinement should allow
H to cascade to ground state

- T <0.5 s in simulations

cascade

[Topcu,and Robicheaux, PRA 73, 043405 (2006)]

“Low-field seeking” hyperfine states
can be trapped (EkmSSO ueV)

- “production + trapping” rate is low
(and, so far, typically stable only over
~1-2 weeks timescale)

- ~1 H observed /3 attempts
(~1 H/hr)

[ALPHA Coll., Nature 468, 673 (2010)]



H detection

« Self-triggering silicon detector

- 60 double-sided strip modules
(1 disconnected) in 3 layers

- NIM-based logic combines AD- and
e*-side trigger information

e |dentify H from p annihilation products

- We don't look for et annihilation
- Main bkg from cosmics (reducible)

» Side effect: lack of good control
samples for MC validation on data

e H can made to annihilate:

- on background gas: residual gas,
e* buffer gas, gas desorbed by heat

- on electrodes: ramp down trap

- on electrodes: transition to
high-field seeking state (e* spin flip)




Demostration of quantum
transition in trapped antihydrogen

[ALPHA Coll., Nature 483, 439 (2012)]




Motivations

 Demonstrate ability to conduct
spectroscopy measurements
with few anti-atoms

- Long confinement allows for
longer irradiation time

- Must cope with reproducibility of
H production, apparatus, and
environment

* No provision for laser access till
2014 = use microwaves

* Positron spin resonance in
ground state anti-hydrogen

- Two transitions (c-b, d-a)

- Clear signature (trapped —
untrapped: annihilation)
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Measurement procedure

* Probability for each transition has an ) 15 MHz | IH!IE.MHz A
abrupt onset associated to minimum B =T =
- = o )
field £+ T _
. @ -5 14204 M i
- Sit close to onset frequency (< B_ ) >l 14204Mnz L =
to maximize spin-flip probability E ! I\ _
- Edges separation (CPT): 1420.4 MHz % -
(~ independent of B_ ) £ &
g |
 Use Electron Cyclotron Resonance to e o g e
characterize B stability at trap center Frequency

2.5r

— Run by run reproducibility: £2 MHz

- Background (solenoid) field value accurate
to £10 MHz (3 Gauss)

- +40 MHz systematic uncertainty in B__

discrepancy between measurement and
model of magnetic trap contribution

[T. Friesen et al., AIP Conf. Proc. 1521, 123 (2013); _
T. Friesen et al., submitted to NJP (2013)] 510 20
r (mm)
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Experimental sequence

* Synthetize — | 1.420GHz |+—

* Trap & hold for 60s cb transiton — < datransition
P - -~

* Irradiate for 30s (6x) frequency

- Observe annihilations as spin flips happen 1/7\ / / / / / } fod
- Expect enough power to flip at first iteration z\ ’ ‘\'

» Release H by quenching the magnets TU / / / / }fbc

- Look for a deficit in count of surviving H
(reproducibility of exp. conditions is critical)

time

'
|

b TE —~F— 1« Compare to closely interspersed off-
| resonance and no-microwaves cycles

- Off-resonance: 100 MHz detuning
(driven by syst.)

- “Back-to-back” cycles, to decouple from
varying experiment / environment
conditions and intermittent detector

£+ 100MHz = + 100 MHz funkiness

Frequency scan in off-resonance cycles 11

Transition probability (arbitrary units)
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“Real time” study of H annihilations

* Long observation window:  Axial annihilation position z

Random Forest to reject cosmics

[l. Narsky, arXiv:physics/0507157 (2005)] - Qualitative features of z-

distribution shed light on

- Trained on real data control samples mechanism causing annihilations

signal (tuned on simulations) between z and RF input variables
— t within first 30s sweep (f_, f ) O N e e
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Resu Its [ALPHA Coll., Nature 483, 439 (2012)]
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e 3.00 excess on- vs. off-resonance

- Agrees with count of surviving H at trap quench:
2 on-res, 23 off-res, 40 no-uyw

« Iv.(H) - v_(H)| <100 MHz

- Consistent with transitions among ground state HF levels 13



Res u Its [ALPHA Coll., Nature 483, 439 (2012)]

e Positron Spin Resonance!

- Ony/off z-distributions disfavor osgF"— = = " 1

-

annihilations on desorbed gas
 Caveat: detector effects are
not considered
simulated

annihilations
on residual gas

- MC model not reliable (material 10
budget, energy loss model and
secondaries) 5
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‘ 7/#%7 nouw - 100 runs

'\ simulated

spin-flips

- Not a severe issue when just B Ll |
looking for an excess o Lo N N

- Mostlyrelevant for analysisof 55 10 o T
properties (e.g.: width, mean) Axial position, z (cm)

of broad z-distributions, as in
guench data
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Applications

 Tested a mechanism for releasing H w/o
lowering / quenching the magnetic trap

- Could allow for a more efficient use of beam-time
and increased stability

- Results in localized annihilation z-distributions
close to trap (and detector) center: more robust
against detector effects w.r.t. trap-quench data

 Implications for H detection in laser
spectroscopy
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Measurement of v(1 S ZS)

* V,c5c(H) precision in magnetic

trap: 10712

* Several possible signatures,
but Ly-a detection challenging

- Very few events
- Very small solid angle

[M.H. Holzscheiter et al., Rep.Prog.Phys. 62, 1 (1999)]

Level Scheme
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[C.L.Cesar etal., PRL77, 255 (1996)]
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Laser Detuning (kHz)

* p count (p retrapping after 2S

photoionization)

« Annihilation (Stark quenching)
EﬁNEwiAnmhlIatlon (u-wave guenching

to high-field-seeking state)
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Outlook on HFS measurement

1 [M. Hayden LEAP 2013]
B v 7

« NMR frequencies show broad

m|n< ab)/max( Cd) at065T 10 -éteerrlr;Ch - Hydrogen Antihydrogen \\?
. . — 10" F M Resonance o

- suitable for magnetic trapped H 1 . )
: M 107 F amse 7
- at 0.5K broadening limits | --:SOF" _

o e -8 B

precision on V.4 to ~2x107 107 n .
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* R&D for NMR resonator in R
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Summary

» Proof of principle experiment: controlled
resonant interaction with H

 Demonstrated viability of working with small
numbers of trapped anti-atoms

* Procedures for forthcoming laser and
microwave spectroscopy taking shape
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Thank you!
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