Where is the New Physics?

EXOTICA?

EXOTICA at the CMS

Matgorzata Kazana on behalf of the CMS Collaboration

National Centre for Nuclear Research NCBJ – Warsaw, Poland

ot Muon Solenoid ent at the CERN's Li

2nd International Conference on New Frontiers in Physics 28 Aug - 5 Sep 2013 Kolymbari, Crete, Greece

EXOTICA at CMS

<u>OUTLINE:</u>

- What is EXOTICA at the CMS?
 - Beyond Standard Model physics
- & which is not a simple SUperSYmmetry
 - Unusual signatures
- Review of selected EXOTIC searches
 - EXO publications > 100 (2009-2013)
 - New results from CMS data collected in 2012 with 20/fb at 8 TeV

Main part

Exotic New Physics

- Extra dimensions
- New Gauge Bosons
- LeptoQuarks
- Black Holes
- Little Higgs theories
- Dark Matter
- Split SUSY, GMSB
- Hidden Valley

M. Kazana

Signatures of Exotic New Physics

- Resonances
 - Di-lepton, di-jet
- Di-bosons
- Multi-jets
- Mono-jet/γ, -lepton
- Top-like BSM
- Long-lived particles
 - Delayed, displaced, kink tracks

New Bosons

 $Z_{\mu} \rightarrow \mu^{+} \mu^{-}$

 $\int L = 0.1 \, \text{fb}^{-1}$

1000 1200

1400

u'u' mass (GeV)

"EXOTICA at C

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

800

Di-lepton Resonances

Di-lepton Resonances

- Many BSM models predict narrow di-lep resonances:
 - Grand Unified Theory heavy spin 1 boson Z' from broken SO(10)
 - Ζ'_ψ (Γ=14 GeV @ M=2.5 TeV)
 - Sequential Standard Model Ζ'_{SSM} (Γ=80 GeV @ M=2.5 TeV)
 - Little Higgs heavy gauge bosons Z'
 - Extra Dimensions spin 2 Randall-Sundrum gravitons G* and many other models
- Experimental challenge:
 - Reconstruction of very high-pT leptons
 - 1 TeV scale, tails of SM distributions
 - Understand detector effects (efficiencies, uncertainty, trigger)
 - BUT: clean signal expected

Di-lepton RESULTS

Event selection:

Double lepton trigger

Di-muon

200

- isolated electron and muons (pT>35 GeV pT>45GeV)
- **Background:** (DY, Di-bosons, jets) estimation from data or MC-based

70

100

 10^{6}

10⁵

10⁴

 10^{3}

 10^{2}

10

10⁻¹

10⁻²

10⁻³

10-

Events / GeV

LIMITS on Z' from di-leptons

M. Kazana

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Di-jet Resonances

• CMS event with the **highest di-jet mass** (5.15 TeV) in the data $pp \rightarrow X \rightarrow 2$ jets

Di-jet Resonances

CMS-PAS-EXO-2012-059

 Many models of New Physics predict resonances decaying into pairs of quarks, gluons or quark-gluon

Trigger:

• Trigger based on $H_{\rm T} = \sum_{i=1}^{N_{\rm jet}} E_{\rm T}$ > 650 GeV

Event selection:

- At least 2 jets with |η| < 2.5 & pT > 30 GeV
 & Δη12 < 1.3
- Final selection: events with di-jet invariant mass
 Mjj > 890 GeV
- Special jet algo: WIDE JET implemented
 - Standard anti-kT algo jets with cone 0.5 and 0.7 used for cross- checks

Models	Х
Excited quark	q*
E ₆ Diquark	D
Axigluon	А
Coloron	С
RS Graviton	G
Heavy W	W'
Heavy Z	Z'
String	S

Wide Jet Technique

WIDE JETs optimize di-jet resonance mass resolution by recombining FSR into the two leading jets

Di-jet Mass Distributions

CMS-PAS-EXO-2012-059

Resonance shapes from CMS simulation:

- Resonance decaying to qq, qg, gg
 - → Width increases
 with number of gluons
 due to FSR
 → Mass peak shitfed
 - towards lower masses
 - \rightarrow Weaker limits expected for **gg**

Di-jet RESULTS

CMS-PAS-EXO-2012-059

Inclusive dijet mass spectrum from wide jets compared to a smooth fit and predictions for QCD and hypothetical W' and axigluon/coloron (A/C)

No evidence!

Data fitted with parametrization used also by CDF and ATLAS

$$\frac{d\sigma}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \ln(m/\sqrt{s})}}$$

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Di-jet Resonance LIMITS

CMS-PAS-EXO-2012-059

	Final State	Obs. Mass Excl.		
		[TeV]		
	qg	[1.20,5.08]		
	- qg	[1.20,3.50]		
•••••		[1.20,4.75]		
	- qq	[1.20, 3.60] + [3.90, 4.08]		
	gg	[1.20,2.79]		
	qq	[1.20,2.29]		
	- qā	[1.20,1.68]		
	= qq+gg	[1.20,1.58]		

Observed **95% CL** upper limits on **o** × **Branching Ratio** × **Acceptance** for di-jet resonances of type **qq**, **qg**, **gg** compared to theoretical predictions

(N-jet) Black Holes

ADD ED, [Arkani-Hamed, Dimopoulos, Dvali, Phys. Lett. B 429, 263 & Phys. Rev. D59,086004]

> CMS Experiment at LHC, CERN Data recorded: Sat Aug 25 12:37: Run/Event: 201671 / 277887114

Lumi section: 199

- The possibility of production of microscopic black holes in particle collisions has been predicted in models with low scale gravity
- If the "true" Planck scale M_D is in the 1 TeV range, partons colliding with energy exceeding M_D, may collapse into a Microscopic Black Hole
- Once produced, the BH evaporate almost instantaneously by emitting energetic particles
- Multi-particle signature highly energetic N objects (jets,leptons,photons)

BH candidate N=13, S_T =2.1 TeV

Black Holes Search

CMS Analysis strategy: Select events with large total transverse energy and check the presence of multiple energetic jets, leptons, and photons

Multiplicity (N)

Number of objects (jet,lep, γ) with pT>50 GeV in an event, excluding MET

• S_T Scalar

 p_T sum of all objects with ET>50 GeV + MET (if greater >50 GeV) S_T is almost independent of the final state multiplicity N \rightarrow QCD bkg. estimation

Separation

 ΔR (jet, lep/ γ) > 0.5 and ΔR (lep/ γ , lep/ γ) > 0.3

• **Trigger** on total jet activity H_T in 350 - 550 GeV 100% eff for $S_T > 700$ GeV

Background in BH Search

Exclusive multiplicities for bkg. estimation

- There is no signal contamination in the fitting and normalization region
- Data-driven bkg. describes data consistently with data

CMS-PAS-EXO-2012-009, JHEP07(2013)178

Black Holes Events?

Inclusive multiplicities for searches from N >=3 to 10

• No excess in the signal regions !

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Microscopic Black Holes LIMITS

Black Hole mass limits 5.7, 5.6, 5.45 TeV

The 95% confidence level limits on the black hole mass as a function of the multi-dimensional Planck scale MD for various Charybdis black hole models with

number of ED =2. The area below each curve is excluded by this search.

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Mono-jets

CMS-PAS-EXO-2012-048

Trigger:

- MET > 120 GeV
- jet pT > 80 GeV & MET > 105 GeV

Event Selection:

- Search for single jet recoiling against MET>250 GeV
- Leading jet pT>110 GeV (|η|<2.0)
- The second jet allowed with pT>30 GeV if Dφ (j1, j2) < 2.5 to reject QCD
- Events with isolated lepton (e,mu,tau) rejected to remove EWK bkg

Background: Data- Driven or MC, eg. :

Z + jets (measured) predicts Z(νν) + jets

All cuts applied besides Dφ (j1, j2)

Mono-jet RESULTS

CMS-PAS-EXO-2012-048

Search performed in 7 bins of MET

Data consistent with expectations !

M. Kazana

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

M. Kazana

24

Mono-leptons DM

CMS-PAS-EXO-2013-004

• First limits on DM with mono-leptons

Mono-leptons

CMS-PAS-EXO-2013-004

√s = 8 TeV

QCD

γ + jets

Diboson

syst uncer

 $\int L dt = 20 \text{ fb}^{-1}$

Ŵ-> I v

DY

data

1500

2000

M_⊤ (GeV)

tt + single top

Dark Matter radiation and interference W

CMS Preliminary $e + E_T^{miss}$

= 300 GeV Λ = 200 GeV

DM と=0

DM ξ = -1

Spin Independent

• Model is characterized by scale $\Lambda = \frac{M_{messenger}}{\sqrt{8\chi 8q}}$

Event selection:

- Single electron(muon) trigger with pT>85(40) GeV
- Lepton ID optimized for high pT
- Kinematical selections: 0.4 < pT / MET < 2
- Δφ (lep pT, MET) < 0.8

Background:

- Main: $W \rightarrow Iv$
- Contributions derived from MC
- M. Kazana

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

>10⁷

<u>∽</u>10⁵

Events/ 10⁴ 10²

10

10-1

 10^{-2}

 10^{-3}

 10^{-4}

500

1000

2500

Mono-leptons LIMITS

Excluded **nucleon**- and **proton**- **Dark Matter cross section** for the combination of electron and muon channels

CMS-PAS-EXO-2013-004

The χ-proton cross section has to be small than:

 $4 \times 10^{-40} \text{ cm}^2$, 7 ×10⁻⁴⁰ cm², 5 ×10⁻³⁹ cm² (1 ×10⁻⁴⁰ cm² 2 ×10⁻³⁹ cm² 9 ×10⁻³⁸ cm²)

for axial-vector (vector) coupling for $\xi = -1/0/+1$

Displaced Jets

- Long-lived massive neutral particles decaying to quark-antiquark pairs
- Distinctive topology of a pair of jets originating at a secondary vertex

Displaced Jets

CMS-PAS-EXO-2012-038

Signal: $gg \rightarrow$ (non-SM) $H \rightarrow 2X$, $X \rightarrow qq$

- Benchmark points
 M_H = [200, 400, 1000] GeV,
 M_X = [50,150,350] GeV,
 cτ_X = [3,20,35,40,300] cm

Event selection:

- Trigger: HT >300 GeV and > 1 jets with small fraction of prompt tracks
 Multivariate discriminant
 - **Multivariate discriminant** based on vertex track multiplicity, fraction of tracks with positive do, and variables from a dedicated track cluster algorithm

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Displaced Jets RESULTS & LIMITS

CMS-PAS-EXO-2012-038

- **Background:** ABCD prediction using jet variables and vertices infos
- Search optimised for two regions Lxy < 20 or Lxy > 20 cm
- For X mean lifetimes of 0.1 to 200 cm, the upper
 - **cross-section** x $B^2(X \rightarrow qq)$ limits are typically 0.3-300 fb

Heavy QUASI Stable Charged Particles

Signal: Long-Lived Particles from GMSB, Split SUSY and others:

- lepton like (stau)
 - fractional charge $(Q = n \cdot 1/3e)^{O}$.
 - mulitple charge $(Q = n \cdot e)$
- R-hadrons formed from gluino or stop
 - charge can flip while crossing particle interacting with detector

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

Five HSCP Search Paths

HSCP with Q = $n \cdot e$ **Mutiply Charged Particles** uses: dE/dx TOF, **do not use pt**, because reco pt ~ true pt/Q CMS Preliminary 1s=8 TeV, L=18.8 fb⁻¹ Data (1s=8 TeV) 18 Data (1s=8 TeV) 18 MC: Q=3 400 GeV/c² MC: Q=2/3 400 GeV/c² Excluded

Fractionaly Charged Particles

uses: pt, dE/dx, no TOF to be inclusive

HSCP RESULTS

- Trigger: muon (pT>40 GeV) or MET > 150 GeV or mu pt> 60 GeV & MET > 65 GeV
- **Basic pre-selection:** pT>45GeV, $|\eta|<2.1$, |dxy| and |dz|<0.5cm, #Hits>7, very loose isolation, cosmic veto, etc
- Event selection Selection optimised to for the best discovery reach for each class of models using track pT, Muon $1/\beta$, **Track I**_{as} (dE/dx discriminator)

Background from ABCD method

					Number of events			
	Selection criteria			$\sqrt{s} = 7 \text{TeV}$		$\sqrt{s} = 8 \text{TeV}$		
	р _Т (GeV/c)	$I_{as}^{(\prime)}$	$1/\beta$	Mass (GeV/c^2)	Pred.	Obs.	Pred.	Obs.
Tracker-only	>70 >0.4		>0	7.1 ± 1.5	8	33 ± 7	41	
		> 0.4	_	>100	6.0 ± 1.3	7	26 ± 5	29
		>0.4		>200	0.65 ± 0.14	0	3.1 ± 0.6	3
			>300	0.11 ± 0.02	0	0.55 ± 0.11	1	
				>400	0.030 ± 0.006	0	0.15 ± 0.03	0
Tracker+TOF	>70 >0.125		>0	8.5 ± 1.7	7	44 ± 9	42	
		> 0.125	> 1 005	>100	1.0 ± 0.2	3	5.6 ± 1.1	7
		>1.225	>200	0.11 ± 0.02	1	0.56 ± 0.11	0	
			>300	0.020 ± 0.004	0	0.090 ± 0.02	0	
Muon-only	>230	_	>1.40	—	_	_	6 ± 3	3
Q > 1e	_	>0.500	>1.200	—	0.15 ± 0.04	0	0.52 ± 0.11	1
Q < 1e	>125	>0.275	—	—	0.12 ± 0.07	0	1.0 ± 0.2	0

M. Kazana

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

HSCP LIMITS

CMS-PAS-EXO-2012-026, JHEP 07(2013)122

Stau R-hadrons (stop, gluino)

Mutiply Charged Particles

Fractionaly Charged Particles

EXOTICA @ CMS

Summary (a kind of)

 We have searched for (almost) everything

EXOTICA @ CMS

<u>Summary (a kind of)</u>

- We have searched for (almost) everything
- We have found nothing
- •We will keep searching

"Exotic island" not have seen yet

EXOTICA @ CMS

<u>Summary (a kind of)</u>

- We have searched for (almost) everything
- We have found nothing

•We will keep searching

"Exotic island" not have seen yet

- CMS performed a **large set of inclusive and exclusive searches** with different signatures and methods
 - No evidence of new physics so far →
 - Mass, cross-section limits are set in context of considered models
- Let's be patient
 - More sophisticated analyses with 2012 8 TeV data on the way
 - We have about one year to get ready (plan and improve techniques) for collisions at 13 TeV

References:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

List of included publications

- 12-061 Di-lep; Z'
- 12-059 Di-wide-jets; q*,A,D,C,Z',W',S
- 12-009 Multi-jet; Black Holes
- 12-048 Mono-jets; ADD, DM
- 13-004 Mono-lep; DM
- 12-038 Displaced jets; Hidden Valley
- 12-026 HSCP; stau, R-hadron

Mono-leptons

CMS-PAS-EXO-2013-004

M. Kazana

"EXOTICA at CMS", 2nd ICFNP, Crete 03.09.2013

