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An Important J(;'(/na[((/(() H—yy

Branching ratio of less than 0.3%, but Picture for Discovery: 3
the CMS detector gives a well e i
measured di-photon 4-momentum M4y = \/EA,&EA,Q (1 —cos(fy)) s e /A
(<] ’//
Need to Sharpen the Picture: i S
5
Photons fragment before they reach the calorimeter and e+/e- 250 * 22, "
pair spread out in the magnetic field : e
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Additional interactions muddy the energy and the signal vertex
is crowded by other vertices
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Vertex Finding

UNCONVERTED PHOTONS

Combine di-photon pT with sum Track pT of
vertices to use as discriminator

CONVERTED PHOTONS

2 complementary methods to give a combined

Measure:
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| Primary vertex

PU vertex
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Use momentum of e+/e- pair only (project it Conversion information and kinematic
variables combined in an MVA
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Use impact point on the ECAL+conversion
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SQUEEZE the ECAL energy resolution

UNCONVERTED

CONVERTED
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Tackling the Reducible Background

Advantages of a granular detector for photon identification
Energy Profile from Reconstructed particles

Energy profile for
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Modeling the Background

Background model fit to data (don’t know what the “true” function should be)

3 ©F === Power law Resultant Signal Bias:

3 O\ = EXp  Each predictsa oo

2 5 different 5 signal events
0 amount of

6 signal events
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STRATEGY: Test a families of functions. Measure the pull of the signal in pseudo-data
generating from one background function and fit to another function

SOLUTION: A polynomial of large enough order gives very small signal bias when fit to
different pseudo-data from various functions



Event Classification BB (1 cos(0,)

Increase sensitivity by dividing the data according to the 5|gnal -to-

background ratio: L It | o
L Combine g 700;_ both EB: Iboth R9>(;.94 : I I }
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CUT-BASED Analysis

As a parallel analysis, there is a more traditional cut-based analysis:
applying ID cuts in four categories of detector resolution

CMS Simulation Preliminary

> =
Q i eetie - Fv. ry P,
s F hab e e Ak
S 0.9 w A “i
b = Aa
A L
o 08F% e
c & E
=]
S 07fF ¥ X
£ = VY- ¥y
o E v ¥y
0.6 s
0.5F
E ¥ H —vy, m: =125 GeV E
04F Y £
E ¥ __4— category 0 (EB, R9>0.94j ¥
0.3
E __w category 1 (EB, R9<0.94) v
02 4 category 2 (EE, R >0.94)
0_13 —%— category 3 (EE, R <0.94)
0 2 -1 0 1

Comparison of Cut Based and MVA Classification

500

ents/Q.02

2000

1500

1000

500

5 et
-1 -08 -06 -04 -02 O

2
photon SC n

—— Al

—— both EB, both R9>0.94
both EB, !both R9>0.94

—— !both EB, both R9>0.94
!both EB, !both R9>0.94

kL
H
h

Ili‘lllll‘lli‘!lllllll

_l\l__;____

|
|
L
Lﬂ_J
I
1.
| L
LT rll_a L

P SR B i e
02 04 06 038 1
di-photon MVA output

y
5

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Efficienc
IS

O

‘I\I\‘\\I\l\\I\lHI\lHI\lHOl\(I)\.\‘\

i
T

doncents
Soxe

o
o

—— 2012 BDT
— 2011 BDT

— 2012 CiC4PF

0.0

'
o

oo \
0 2

SuperCluster Eta

0.5

Efficienc

0.4

0.3

0.2

0.1

0.0"

Comparison of Cut Based and MVA photon ID

} — 2012 BDT
r — 2011BDT
? — 2012 CIC4PF
= ° &0
r o0 % 4 OO
L& 0% a0af o
Ghgsaesest et Sk
5 | ’ |
-2 0 2

“E= both EB, both R9>0.94

= f

E | -t 1

Y =GRS . ik
N B T S B

sE= both EB, Iboth R9>0.94

i

¥

i

|
|
|
| :
| £
|
|
|

[
|
|
|
|
|
[
|
|
I

| 1
| ||
I bl
| [
| 1
| Ih]
| | o
| |
| | I
L il

di-photon MVA output

5Z o4 & 08
di-photon MVA output

CiC

Iboth EB, Iboth R9>0.94|

T
[
[ 1
[
[
[
[ 1
[

AL U L BRI A

[
I
[
|
|
|
|
|
|
L

| [T
| I
| |1
| I 1
| I
| I
[ I
| |1
| L]
I i

0 G4 06 o8 1
di-photon MVA output

oZ 04 66 0
di-photon MVA output

Data
(Background MC agrees)

SuperCluster Eta

Overlap

MVA

Signal MC



Events / 2 GeV

Exclusive Tags

Further classifying by production mode boosts the
sensitivity: additional objects in the final state
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Mass Measurement e e

+ Best Fit

—1c

© = M w ~ O o N ® O

2 --- 20

Fitting for the signal strength and
the mass gives the best fit mass at
125.24+0.5+0.8 |

0.5

Reminder about the photon energy scale:

fEZ 123 124 125 126 127 128

/—ee m, (GeV)
3o owaramay | o SYStematiC Uncertainty :
f Electrons/photon difference not
son] simulated perfectly in the MC
- Need to extrapolate the energy scale for
o] the Z mass to the higher mass of the
Higgs boson
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\s=7TeV L=5.1fb"
CMS Preliminary Vs=8TeV L=19.6fb"

SM Compatibility B el | |
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Conclusion

Analysis uses MVA techniques to chisel the picture of H—yy

Future projections show much smaller uncertainties on the signal
strength and also increased precision on the mass measurement

CMS Projection
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ADDITIONAL MATERIAL



MVA TECHNIQUES

* Higgs Analysis requires a finely tuned discrimination between signal and background

MVA
* Classification: Choosing cuts by hand to optimize the boundary

+ (Can categorize by choosing cuts on a few
discriminating variables to sketch the signal-to-
background ratio (assumes variables are independent)

More optimally can use many discriminating variables
input to a learning algorithm that maps them to the
signal-to-background ratio (models the correlation

between two variables) - — —
X
\ 1

« Also to find a mass peak the analysis needs the best energy resolution

* Regression: Estimate the Energy Correction MVA to model a function of the
in bins of a variable Energy Correction

Can model the energy correction as a function i
of one variable e.g. estimate energy correction  f{(x)
in eta bins

fix)

More optimally can model the energy Rl
correction as a function of many variables. Use 2 : WSS
a learning algorithm to map the input variables * .

to an energy correction .




MVA'REGRESSIONTECHNIQUE FOR
CALIBRATION: BOOSTED DECISION TREES '

Factorized Corrections: One can imagine using a set of DECISION TREE
variables that are dependent on the energy scale to define ——— ) |
aset of categories and then estimate the scale in each v Lot s %

category (e.g. bin in eta/r9)

A %’" - $/(S+8)=0.522 % ,
ONE STEP FURTHER MVA: The energy scale is really a w -
continuous variable of several inputs. m (oan Il oo un | pearw ety ﬁ

L1 Use logic tree which tries to group together

photons with similar energy scale by applying a EXAMPLE: Here a decision tree is used to identify a track from a
series of cuts on the input variables in a training converted photon (signal) from tracks from charged pions (background) |
sample (Photons from simulation)—finds local based on input variables (number of track layers, DCA to primary vertex
extrema in the parameter space of inputs. etc). Blue boxes are where S/S+B is determined, in green the tree

deepens to further split the parameter space

L1 Create many such trees (boost) to smooth out noise
from outlying events

O Photon interaction with material is well modeled in
simulation
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Photon Control Sample

CMS preliminary, {s =8 TeV, L =19.6 fb"
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MVA Categories

# of events/0.04
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MVA -Cutbased Comparison

Low signal to background ratio a fundamental feature of the H—yy

channel.

Uncertainty on the signal strength driven by statistical fluctuations of the
background, and analysis changes can lead to statistical changes due to
fluctuations of which events are selected, and their fluctuations of their
mass (recalibration etc.).
The correlation coefficient between the MVA and cut-based signal
strength measurements is found to be r=0.76 (estimated using jackknife

techniques).

MVA analysis | cut-based analysis

(at mp=125GeV) | (at mp=124.5GeV)
7 TeV Le9TE 22777,
8 TeV 0'5518:%5 0'9318%
7 +8 TeV 0.78028 1117030

Taking account of the correlation, the
compatibility between the MVA and cut-
based analysis measurements of the signal
strength is found to be within 1.50 for the
combined 7 and 8 TeV measurement, and
within 1.80 for the 8 TeV measurement
alone.
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