## doubly heavy tetraquarks and baryons

#### Marek Karliner

JHEP 7,153(2013) – arXiv:1304.0345, with S. Nussinov JHEP 8,96(2013) – arXiv:1305.6457, with Y. Frishman



Tel Aviv University



ICNFP 2013, OAC, Kolymbari, Crete

#### Possibility of Exotic States in the Upsilon system

Marek Karliner<sup>a\*</sup>
and
Harry J. Lipkin<sup> $a,b\dagger$ </sup>

#### Abstract

Recent data from Belle show unusually large partial widths  $\Upsilon(5S) \to \Upsilon(1S) \pi^+\pi^-$  and  $\Upsilon(5S) \to \Upsilon(2S) \pi^+\pi^-$ . The Z(4430) narrow resonance also reported by Belle in  $\psi'\pi^+$  spectrum has the properties expected of a  $\bar{c}cu\bar{d}$  charged isovector tetraquark  $T^{\pm}_{\bar{c}c}$ . The analogous state  $T^{\pm}_{\bar{b}b}$  in the bottom sector might mediate anomalously large cascade decays in the Upsilon system,  $\Upsilon(mS) \to T^{\pm}_{\bar{b}b}\pi^{\mp} \to \Upsilon(nS)\pi^+\pi^-$ , with a tetraquark-pion intermediate state. We suggest looking for the  $\bar{b}bu\bar{d}$  tetraquark in these decays as peaks in the invariant mass of  $\Upsilon(1S)\pi$  or  $\Upsilon(2S)\pi$  systems. The  $\bar{b}bu\bar{s}$  tetraquark can appear in the observed decays  $\Upsilon(5S) \to \Upsilon(1S)K^+K^-$  as a peak in the invariant mass of  $\Upsilon(1S)K$  system. We review the model showing that these tetraquarks are below the two heavy meson threshold, but respectively above the  $\Upsilon\pi\pi$  and  $\Upsilon K\bar{K}$  thresholds.

#### Observation of two charged bottomonium-like resonances

The Belle Collaboration

(Dated: May 24, 2011)

#### Abstract

We report the observation of two narrow structures at  $10610 \,\mathrm{MeV}/c^2$  and  $10650 \,\mathrm{MeV}/c^2$  in the  $\pi^{\pm}\Upsilon(nS)$  (n=1,2,3) and  $\pi^{\pm}h_b(mP)$  (m=1,2) mass spectra that are produced in association with a single charged pion in  $\Upsilon(5S)$  decays. The measured masses and widths of the two structures averaged over the five final states are  $M_1 = 10608.4 \pm 2.0 \,\mathrm{MeV}/c^2$ ,  $\Gamma_1 = 15.6 \pm 2.5 \,\mathrm{MeV}$  and  $M_2 = 10653.2 \pm 1.5 \,\mathrm{MeV}/c^2$ ,  $\Gamma_2 = 14.4 \pm 3.2 \,\mathrm{MeV}$ . Analysis favors quantum numbers of  $I^G(J^P) = 1^+(1^+)$  for both states. The results are obtained with a  $121.4 \,\mathrm{fb}^{-1}$  data sample collected with the Belle detector near the  $\Upsilon(5S)$  resonance at the KEKB asymmetric-energy  $e^+e^-$  collider.





Comparison of  $Z_b(10610)$  and  $Z_b(10650)$  parameters obtained from different decay channels. The vertical dotted lines indicate  $B^*\overline{B}$  and  $B^*\overline{B}^*$  thresholds.

$$J^P = 1^+$$
 for both  $Z_b(10610)$  and  $Z_b(10650)$ 

The Z\_b resonances decay into

Y(nS) and a charged pion

- → must contain both bb\* and ud\*
  - manifestly exotic

# Neutral member of the I=1 multiplet very recently also observed by Belle in Dalitz plot analysis

# $\Upsilon(5S) \to \Upsilon(nS)\pi^0\pi^0$ decay

In this fit mass and width are fixed from the charged  $Z_b$  result.



fit result with Z<sub>b</sub>
 fit result without Z<sub>b</sub>



Simultaneous fit gives 6.3  $\sigma$  for  $Z_b(10610)^0$ 

arXiv:1207.4345

# After the discovery of Z\_b-s by Belle, natural to expect analogous states in the charm system

one caveat:

a priori unknown whether charmed quarks are heavy enough to allow for binding

encouraging indications from toy model of QCD in D=1+1

[ JHEP 8,96(2013) - arXiv:1305.6457 ]

in March 2013 BES in Beijing and Belle in KEK provided the answer:



#### Observation of a Charged Charmoniumlike Structure in $e^+e^- \to \pi^+\pi^- J/\psi$ at $\sqrt{s}=4.26~{\rm GeV}$

We study the process  $e^+e^- \to \pi^+\pi^- J/\psi$  at a center-of-mass energy of 4.260 GeV using a 525 pb<sup>-1</sup> data sample collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross section is measured to be  $(62.9 \pm 1.9 \pm 3.7)$  pb, consistent with the production of the Y(4260). We observe a structure at around 3.9 GeV/ $c^2$  in the  $\pi^\pm J/\psi$  mass spectrum, which we refer to as the  $Z_c(3900)$ . If interpreted as a new particle, it is unusual in that it carries an electric charge and couples to charmonium. A fit to the  $\pi^\pm J/\psi$  invariant mass spectrum, neglecting interference, results in a mass of  $(3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$  and a width of  $(46 \pm 10 \pm 20) \text{ MeV}$ . Its production ratio is measured to be  $R = (\sigma(e^+e^- \to \pi^\pm Z_c(3900)^\mp \to \pi^+\pi^- J/\psi)/\sigma(e^+e^- \to \pi^+\pi^- J/\psi)) = (21.5 \pm 3.3 \pm 7.5)\%$ . In all measurements the first errors are statistical and the second are systematic.





### Study of $e^+e^- o \pi^+\pi^- J/\psi$ and Observation of a Charged Charmoniumlike State at Belle

The cross section for  $e^+e^- \to \pi^+\pi^- J/\psi$  between 3.8 and 5.5 GeV is measured with a 967 fb<sup>-1</sup> data sample collected by the Belle detector at or near the Y(nS) ( $n=1,2,\ldots,5$ ) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of  $\pi^+\pi^- J/\psi$  production around 4 GeV is observed. This feature can be described by a Breit-Wigner parametrization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of  $Y(4260) \to \pi^+\pi^- J/\psi$  decays, a structure is observed in the  $M(\pi^\pm J/\psi)$  mass spectrum with 5.2 $\sigma$  significance, with mass  $M=(3894.5\pm6.6\pm4.5)~{\rm MeV}/c^2$  and width  $\Gamma=(63\pm24\pm26)~{\rm MeV}/c^2$ , where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmoniumlike state.



$$M_{Z_c} = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$$

$$\Gamma_{Z_c} = 46 \pm 10 \pm 20 \text{ MeV}$$

$$Z_c^+(3900)$$
 decays to  $J/\psi \pi^+$ 

## a) pion



#### b) proton



### c) Z<sub>c</sub>(3900)



## tetraquark or a "molecule"?

The molecule idea has a long history: Voloshin & Okun 1976, de Rujula, Georgi & Glashow 1977 Tornqvist, Z. Phys. C61,525 (1993)

Z\_b-s sit 3 MeV above the BB\* and B\*B\* thresholds

X(3872) sits at the DD\* threshold

strong hints in favor of the molecular interpretation

what about the  $Z_c(3900)$ ?

Heavy-light Qq mesons have I=1/2

- → they couple to pions
- → deuteron-like meson-meson bound states, "deusons"

via pion exchange - no D Dbar, only D Dbar\*

$$m{D}ar{D}^*$$
 (I=0) at threshold  $\longleftrightarrow$  X(3872) ! S-wave  $\to$   $J^P=1^+$ 

I=1 attraction x3 weaker than I=0

→ I=1 expected well above threshold

What about B B-bar\* analogue ?...

#### B B\* vs D D\*:

- -- same attractive potential
- -- much heavier, so smaller kinetic energy
- $\Rightarrow$  expect  $B\bar{B}^*$  and  $B^*\bar{B}^*$  I=1 states near threshold
- $\rightarrow Z_b(10610)$  and  $Z_b(10650)$  seen by Belle !!!

I=0 binding much stronger

→I=0 states expected well below threshold

## **EXP** signature:

$$Z_b(I=0) \rightarrow Y(ns) \pi_+ \pi_-$$
  
 $Z_b(I=0) \rightarrow B B-bar \gamma via EM B* \rightarrow B \gamma, E(\gamma)=46$   
MeV  $\rightarrow$  LHCb!

in the  $M_Q \rightarrow \infty$  limit attractive potential between the two heavy mesons becomes universal

Kinetic E 
$$\sim$$
 p<sup>2</sup>/M\_Q  $\rightarrow$  0

→ treat kinetic E as perturbation

$$H = a \cdot p^2 + V(r)$$
 where  $a \equiv 1/2\mu_{\rm red}$ 

convert the parameter  $a \sim 1/M_Q$  into a dimensionless parameter  $\tilde{a}$ 

"natural" unit of  $\sim 0.8 \text{ Fermi} \sim 4.0 \text{ GeV}^{-1}$ 

With  $m_D \sim 2 \, {\rm GeV}$  and  $m_B \sim 5.3 \, {\rm GeV}$ 

$$\tilde{a}(D) = 1/8 \qquad \qquad \tilde{a}(B) = 1/21$$

→ small: can use 1-st order P.T.

for I=1 potential have 2 data points:

 $Z_c(3900)$  at  $\tilde{a}(D)$  approximately 27 MeV above  $DD^*$  threshold

 $Z_b(10610)$  at  $\tilde{a}(B)$  approximately 3 MeV above  $BB^*$  threshold

Linear extrapolation to 
$$\tilde{a} = 0$$
 yields  $E_b^{I=1}(\tilde{a}=0) \approx -11.7 \,\mathrm{MeV}$ 

In view of the convexity, the actual binding energy likely to slightly exceed this linear extrapolation

 $\rightarrow$  use this result for the isovector channel to estimate the  $\bar{B}B^*$  binding in the isoscalar channel

Assuming that the isoscalar binding energy in the  $m_Q \to \infty$  limit is 3 times larger than for the isovector,

$$E_b^{I=0}(\tilde{a}=0) \approx 3 \cdot (-11.7) = -35 \,\text{MeV}$$

$$X(3872)$$
 at  $\bar{D}D^*$  threshold  $\rightarrow E_b^{I=0}(\tilde{a}(D)) \approx 0$ 

Linear extrapolation to  $\tilde{a}(B)$  yields  $\bar{B}B^*$  binding energy in the isoscalar channel  $\approx -20\,\mathrm{MeV}$ 

# Heavy Quark Nuclear Physics!

the newly discovered  $Z_c(3900)$  isovector resonance confirms and refines the estimates for the mass of the putative  $\bar{B}B^*$  isoscalar bound state.

immediately leads to several predictions:

- two I=0 narrow resonances in bottomonium system,
   ~23 MeV below Z\_b(10610) and Z\_b(10650), i.e.
  - ~20 MeV below BB\* and B\*B\* thresholds
- I=0 resonance near D\* Dbar\* threshold
- I=1 resonance slightly above D\* Dbar\* threshold

the newly discovered  $Z_c(3900)$  isovector resonance confirms and refines the estimates for the mass of the putative  $\bar{B}B^*$  isoscalar bound state.

immediately leads to several predictions:

- two I=0 narrow resonances in bottomonium system,
   ~23 MeV below Z\_b(10610) and Z\_b(10650), i.e.
   ~20 MeV below BB\* and B\*B\* thresholds
- I=0 resonance near D\* Dbar\* threshold
- I=1 resonance slightly above D\* Dbar\* threshold reported Aug 13 by BES, arXiv:1308.2760
   Z\_c{+-}(4025): M=4026.3+-2.6+-3.7 MeV, Γ=24.8+-5.6+-7.7

## Likely observable at LHC and Tevatron:

Guo, Meißner & Wang, arXiv:1308.0193

~ nb x-section for Z\_b(10610) and Z\_b(10650)

x-section for Z\_c(3900) and Z\_c(4020) larger by a factor of 20-30

large enough to be observed

x-section for neutral exotic states?

$$\Sigma_b^+ \Sigma_b^-$$
 dibaryon ?

 $\Sigma_{\tt b}$  heavier, with  ${\tt l=1}$   $\rightarrow$  stronger binding via  $\pi$ 

→ deuteron-like J=1, I=0 bound state: "beautron" exp. signature:

$$(\Sigma_b \Sigma_b) \rightarrow \Lambda_b \Lambda_b \pi \pi$$

$$\Gamma(\Sigma_b) = 4.3 + -3 \text{ MeV}, \quad \Gamma(\Sigma_b) = 9.2 + -3 \text{ MeV}$$

so might be visible

should be seen in lattice QCD

## doubly heavy baryons QQq (bbq,ccq, bcq)

- not exotic, must exist
- excellent challenge for EXP (LHCb!)
   (bbq) → (cc\*s) (cc\*s) q → J/Ψ J/Ψ Ξ
   unique signature, w/o background
- QQq and QQq\*q\* have the same color structure
- → once QQq mass is known, can immediately predict QQq\*q\* mass:

$$m(cc\bar{u}\bar{d}) = m(\Xi_{ccu}) + m(\Lambda_c) - m(D^0) - \frac{1}{4}[m(D^*) - m(D)]$$

## Summary

- a simple and consistent picture emerges from Belle and BES data:
- the new exotic resonances are loosely bound states of DD\*, D\*D\*, BB\* and BB\*

- seen!
- prediction:  $\bar{D}^*D^*$  resonances in I=0 and I=1 channels
- predictions: new I=0 BB\* and B\*B\* states below threshold
- heavy "deuteron":  $\Sigma_b \Sigma_b$
- challenge for EXP: doubly heavy baryons QQq (LHCb?)
- QQq → accurate prediction for QQq\*q\* tetraquark
- challenge for TH: derive from QCD