

Results on identified particle production in pp, p-Pb and Pb-Pb collisions measured with ALICE at the LHC

Outline

- > Introduction.
- \succ Particle identification with ALICE detectors.
- > Spectra, particle ratios and R_{AA} in Pb-Pb collisions.
- Results on p-Pb collisions.
- Similarities and differences among: pp, p-Pb and Pb-Pb collisions.
- Conclusions.

What can be observed from the transverse momentum, $p_{\rm T}$, spectra of identified particles measured in different

systems, pp, p-Pb and Pb-Pb?

A. Ortiz, ICNFP Crete 2013

What can be observed from the transverse momentum, p_{τ} , spectra of identified particles measured in different

systems, pp, p-Pb and Pb-Pb?

Pb-Pb collisions

produce a hot and dense medium, QGP, where effects due to collective expansion, quark recombination and jet quenching could be observed.

p-Pb collisions allow one to study cold nuclear matter effects which are present also in Pb-Pb collisions.

Phys. Rev. Lett. 110, 082302 (2013)

A. Ortiz, ICNFP Crete 2013

UND

Low p_{τ} production in Pb-Pb

Intermediate p_{τ} production

The sizes of the enhancements are compatible to those measured in Au-Au collisions at 200 GeV (arXiv:1304.3410)

At low to intermediate p_{τ} (<8 GeV/c) both baryon to meson ratios exhibit the same centrality dependence: the position of the peak moves to higher p_{τ} when multiplicity increases.

High p_{T} production

At high p_{τ} (>8 GeV/c), within the systematic uncertainties pions, kaons and protons are equally suppressed.

These results contradict the prediction for medium modified jets via enhanced parton splitting functions: Eur. Phys. J. C 55, 293 (2008). They also contradict the predictions assuming in-medium hadronization based on formation time: Phys. Lett. B 691, 208 (2010).

High *p* production

Low p_{τ} , comparison to models

Blast-Wave fit:

Schnedermann, PRC 48, 2462 (1993)

> spectral-shape analysis performed with hydro-inspired model

> allows characterization of ID-spectra with small set of parameters

EPOS LHC:

Pierog, arXiv:1306.0121 [hep-ph]

- hard/soft scattering contribute to jet/bulk
- bulk matter described with hydro Kraków:

Bozek, PRC 85, 014911 (2012)

- ➤ initial conditions from Glauber MC
- \succ viscous hydrodynamic expansion
- > statistical hadronization at freeze-out

DPMJET:

Roesler, arXiv:hep-ph/0012252

- ➤ QCD-inspired model
- > reproduces $dN_{ch}/d\eta$ in NSD p-Pb.

Models including hydro give an overall good description of data, this is particularly interesting in p-Pb.

arXiv:1307.6796v1 [nucl-ex]

Low p_{-} , comparison to models

V/c)⁻²] 10^{3}

BW analysis.

10⁴

\blacktriangleright For all 3 systems we observe the same evolution of the BW

parameters when multiplicity increases.

PYTHIA does not contain any hydrodynamic mechanism, but a partonic process, color reconnection, may play a role [Phys. Rev. Lett. 111, 042001, (2013)].

ALI-PUB-58145

Particle ratios vs p_{-}

A. Ortiz, ICNFP Crete 2013

$p/\pi vs dN_{ch}/d\eta$ in three p_{T} intervals

Conclusions

- > The evolution of the p_{τ} spectral shapes with multiplicity measured in p-Pb collisions shows similarities to analogous measurements in Pb-Pb collisions. At low p_{τ} (<2 GeV/*c*), the
- spectra are well described by models which include hydro. >At intermediate p_{τ} (2-8 GeV/c) we observe an increase of the
 - baryon to meson ratio with increasing multiplicity. This behavior is seen in p-Pb, Pb-Pb and pp collisions (even in Pythia where the effect is due to a partonic mechanism, color reconnection, which mimics radial flow).
- >At higher p_{τ} (>8 GeV/c), the particle ratios measured in Pb-Pb are consistent to those measured in pp. From the $R_{_{AA}}$ measurement we conclude that $\pi/K/p$ are equally suppressed at high $p_{_{T}}$.

Backup

٨/K⁰ vs Multiplicity

Scaling exponent vs p_{τ}

For all 3 systems we observe the same evolution of the BW parameters when multiplicity increases.
PYTHIA does not

contain any hydrodynamic mechanism, but a partonic process, color reconnection, may play a role [Phys. Rev. Lett. 111, 042001, (2013)].

