, A condensed matter approach to dynamic systems
at the micrometer and femtometer scales
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Outline

e Introduction to micro-explosions — RHIC’s big brother

e Energy dependence of the anisotropic freezeout shape
®* micro-explosions
e femto-explosions
e connection to QGP viscosity

e Geometric substructure of the shocked region, speciation
e femto-explosions
®* micro-explosions

e Blast creation of exotic, new forms of confined matter
® micro-explosions

e femto-exploations

e Summary
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Big bang femto bangs
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Big bang femto bangs

» But it’s not really condensed matter physics.
Infation A
Quark Soup Can such a short-lived, dynamic system be used to

probe the phase diagram?
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figure from PBM — talk on Thursday
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Ultra-cold atomic gas (model of) heavy ion collision
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figure from PBM — talk on Thursday
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New J. Phys. 13 065006 (2011).
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week ending

PHYSICAL REVIEW LETTERS 28 APRIL 2006

PRL 96, 166101 (2006)

Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal:
Evidence of Multimegabar Pressures

S. Juodkazis,' K. Nishimura,' S. Tanaka," H. Misawa,' E. G. Gamaly,” B. Luther-Davies,’
L. Hallo,? P. Nicolai,” and V. T. Tikhonchuk’
'CREST-JST and Research Institute for Electronic Science, Hokkaido University, N21-W10,
CRIS Building, Kita-ku, Sapporo 001-0021, Japan
Centre for Ultrahigh Bandwidth Devices for Optical Systems, Laser Physics Centre,

Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
*Centre Lasers Intenses et Applications, UMR 5107 CEA CNRS - Université Bordeaux 1, 33405 Talence, Cedex, France
(Received 24 November 2005; published 25 April 2006)

Extremely high pressures (~10 TPa) and temperatures (5 X 10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an intensity
over 10'* W/cm? converting material within the absorbing volume of ~0.2 xm? into plasma in a few fs.
A pressure of ~10 TPa, far exceeding the strength of any material, is created generating strong shock and
rarefaction waves. This results in the formation of a nanovoid surrounded by a shell of shock-affected
material inside undamaged crystal. Analysis of the size of the void and the shock-affected zone versus the
deposited energy shows that the experimental results can be understood on the basis of conservation laws
and be modeled by plasma hydrodynamics. Matter subjected to record heating and cooling rates of

studied in a well-controlled laboratory environment.
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PHYSICAL REVIEW LETTERS week ending

PRL 96, 166101 (2006) 28 APRIL 2006

Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal:
Evidence of Multimegabar Pressures
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Extremely high pressures (~10 TPa) and temperatures (5x10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an
intensity over 10* W/cm? converting material within the absorbing volume of ~0.2 um?3 into
plasmain a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created
generating strong shock and rarefaction waves. This results in the formation of a nanovoid

surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of
the void and the shock-affected zone versus the deposited energy shows that the experimental
results can be understood on the basis of conservation laws and be modeled by plasma
hydrodynamics. Matter subjected to record heating and cooling rates of 108 K/s can, thus, be
studied in a well-controlled laboratory environment.
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Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal:
Evidence of Multimegabar Pressures
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Extremely high pressures (~10 TPa) and temperatures (5x10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an
intensity over 10* W/cm? converting material within the absorbing volume of ~0.2 um3 into
plasma in a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created
generating strong shock and rarefaction waves. This results in the formation of a nanovoid
surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of

the void and the shock-affected zone versus the deposited energy shows that the experimental
results can be understood on the basis of conservation laws and be modeled by plasma
hydrodynamics. Matter subjected to record heating and cooling rates of 10'® K/s can, thus, be
studied in a well-controlled laboratory environment.
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Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal:
Evidence of Multimegabar Pressures
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Extremely high pressures (~10 TPa) and temperatures (5x10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an
intensity over 10* W/cm? converting material within the absorbing volume of ~0.2 um3 into
plasma in a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created
generating strong shock and rarefaction waves. This results in the formation of a nanovoid
surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of
the void and the shock-affected zone versus the deposited energy shows that the experimental
results can be understood on the basis of conservation laws and be modeled by plasma
hydrodynamics. Matter subjected to record heating and cooling rates of 10'® K/s can, thus, be
studied in a well-controlled laboratory environment.
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Extremely high pressures (~10 TPa) and temperatures (5x10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an
intensity over 10* W/cm? converting material within the absorbing volume of ~0.2 um3 into
plasma in a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created
generating strong shock and rarefaction waves. This results in the formation of a nanovoid
surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of
the void and the shock-affected zone versus the deposited energy shows that the experimental
results can be understood on the basis of conservation laws and be modeled by plasma
hydrodynamics. Matter subjected to record heating and cooling rates of 10'® K/s can, thus, be
studied in a well-controlled laboratory environment.
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Extremely high pressures (~10 TPa) and temperatures (5x10° K) have been produced using a single
laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an
intensity over 10* W/cm? converting material within the absorbing volume of ~0.2 um3 into
plasma in a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created
generating strong shock and rarefaction waves. This results in the formation of a nanovoid
surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of
the void and the shock-affected zone versus the deposited energy shows that the experimental
results can be understood on the basis of conservation laws and be modeled by plasma
hydrodynamics. Matter subjected to record heating and cooling rates of 108 K/s can, thus, be
studied in a well-controlled laboratory environment.
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PHYSICAL REVIEW B 76, 024101 (2007)

ion of a short laser pulse in a
cavity formation

Model and numerical simulations of
transparent dielectric ma

“propagation and abso
ial: Blast-wave launch a

Ludovic Hallo,"* Antoine Bourgeade,” Vladimir T. Tikhonchuk,' Candice Mezel,! and Jérome Breil
I Wniversité Bordeaux 1, CNRS, CEA, UMR 5107, 33405 Talence Cedex, France
p 2CEA-CESTA, BP 1, 33114 Le Barp, France

(Received 30 March 2007; published 2 July 2007)

resUIts Canm pe UNOersStooa O TNE 0SS 0T CONSErvation Taws ana e Moueea by prasma
hydrodynamics. Matter subjected to record heating and cooling rates of 10'® K/s can, thus, be
studied in a well-controlled laboratory environment.

T studied in a well-controlled laboratory environment.
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Appl Phys A (2008) 92: 837841 Applied Physics A
DOI 10.1007/s00339-008-4580-5 Materials Science & Pro(essing

Formation of nanocavities in dielectrics: influence of equation
of state r

800 T T T

L. Hallo - A. Bourgeade - C. Mézel - G. Travaillé -
( D. Hébert - B. Chimier - G. Schurtz - V.T. Tikhonchuk
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Zhou & Gu, App. Phys. Lett. 87 241107 (2005)
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RHIC BES-I

Energies chosen to cover the interesting transition region
dictated bV the scale of the theory (not highest energy possible)
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Azimuthal dependence of HBT radii at RHIC

STAR, PRL93 012301 (2004)

I ' I ' I [ 1 ' I ' LI

. % 1F * 125
I R e 1L * & * % % ]
R g [ ** T ¥
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0 w2 w
® (radians)

“No-flow formula” estimated good within ~ 30% (low pT)

R’ R’
R, =(RI(9)-cos(mp)) e=2-t2=2-%

Retiere&MAL PRC70 (2004) 044907
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STAR BES results [prelim]

Excitation function for freeze-out eccentricity, ¢,

0.4 I m  E895-PLB 496, 2004 (7.4-29.7%)
L ®  CERES - PRC 78, 2008 (10-25%)
w L ¥  STAR- New Results (10-30%)
« — —— UrQMD
- T Hybrid[BM]+UrQMD
0'3 e b oo ——————.— Hybrid[HG]+UrQMD
: [ simimis 2D hydro EoS-Q
B o e - — . = 2D hydro EoS-H
L Tiay — — . 2D hydro EoS-l
0.2— \ ~,
0.1—
0— :
L i
— % STAR preliminary
B 1 1 n.{ 1 Ll 1 1 I 1 1 1 1 | L1l I 1 1 1 1 1 L1l
1 10 10

STAR, Quark Matter 2012
® no non-monotonic or threshold behaviour

e remarkably (depressingly) consistent with prediction using soft hadronic EoS with

realistic freezeout

o
Intern

\/Suy (GeV)

10°

But results may provide the key to something at least as fundamental... (next)




Elliptic flow in a viscous hydro

Heinz, Chen, Song, arXiv:1108.5323
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Hydrodynamics: conservation laws for long wavelength modes
0, T" =0

Generally: e

T = (e + P)u“ w’ — Pgt + v,

First order Navier Stokes theory: :

THY — fw _ //(v;z w’ + VY ut — ZAILLI./VQUG). ‘E
n: Shear viscosity "\
Large n = transport of momentum across fluid layers ‘=
\
+ initial conditions + Equation of State |
(nontrivial!) (fundamental) :E
(]

EOS Q

300

o o
o )

p (GeV/m®)
o
i

------

Temperature (MeV)

Hadronic Gas

alski, T. Lappi and R. Venugopalan, Phys.Rev.Lett. 100:022303
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E895 (-0.6<y<0.6, 7.4-29.7%) —— UrQMD
CERES (-1<y<-0.5, 10-25%) 2D hydro EoS-Q
STAR (-0.5<y<0.5, 10-30%) ===+ 2D hydro EoS-H

STAR (-1<y<-0.5, 10-30%) “=+r=* 2D hydro EoS-l
STAR (0.5<y<1, 10-30%) ~—4— 2D hydro MCKLN
—+ — 2D hydro MCGLB

K, =0.15-0.6 GeVic

*Model centralities
correspond to data

e

MC-KLN n/s = 0.2
MC-Glauber n/s = 0.08
Shen and Heinz (PRC85 054902 (2012)) )

1

e Two initial-state/viscosity combinations that give degenerate results in azimuthal
momentum space, are non-degenerate in azimuthal coordinate space

e animportant handle on a fundamental QCD coefficient
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ON THE “SHOCKED” AFTERMATH

Beyond overall shape:
Geometric substructure, speciation and exotic states of (confined) matter
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Speciation: Dynamics of separation distributions

4 Blast wave calculation )
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-10 -SR ?fm) > 10 Collective flow generates separated emission regions
| F. Retiere & MAL 2004 J (“homogeneity regions”) for hadrons of different mass.
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Speciation: Extracting the source characteristics

R(k*) = B :/d% S(7) [ U (7, k*)|?
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" Y. R(),o( L ) probes size

Re(R1 1( ke ))  probes asymmetry
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Speciation in 0-5% Central Au+Au @ 200 GeV

* Narrow Coulomb hole < large source * First such high-quality data
* Significant asymmetry in correlation function e consistent with blast scenario
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“Surprising speciation” substructure discovered in
microexplosions in sapphire

Distance from center \vjilionis et al, Nature Comm. DOI: 10.1038 (2011)

~360 nm
(shell boundary)

///’

Fast
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Time
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“exotic” bcc-Al from ultra-high pressure blast
(first observation; may play role in planetary core)

=
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Micro-X-ray diffraction (uXRD) image of the shockwave compressed area
e peaks reveal essentially pure sample of new phase
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Generation of novel, exotic form of stable matter in
femtoexplosions
( p p \
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Science 328, 58 (2010) — A
p
STAR discovers the first anti-strange anti-nucleus '.. '.0 ~
n
n
[ ® P
naulr Nature 473, 353 (2011) o® °®
STAR discovers the heaviest anti-nucleus ‘He
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Summary — Parallel programs & message from STAR

in-principle relevance to larger planets, Big Bang
systems inertial-confinement fusion
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Summary — Parallel programs & message from STAR

in-principle relevance to larger planets, Big Bang
systems inertial-confinement fusion
sequence of events rapid energy deposition 2 deconfinement transition = plasma hydro

anisotropic expansion = cooling & re-confinement, new states
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Summary — Parallel programs & message from STAR

in-principle relevance to larger
systems

sequence of events
excitation function of F.O. shape
sensitive to EoS

threshold behaviour observed

handle on viscosity

planets, Big Bang
inertial-confinement fusion

rapid energy deposition 2 deconfinement transition = plasma hydro
anisotropic expansion = cooling & re-confinement, new states

v 4
4 see my talk Wednesday
? v/ (not widely appreciated)
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Summary — Parallel programs & message from STAR

in-principle relevance to larger planets, Big Bang

systems inertial-confinement fusion

sequence of events rapid energy deposition 2 deconfinement transition = plasma hydro
anisotropic expansion = cooling & re-confinement, new states

excitation function of F.O. shape 4

sensitive to EoS

threshold behaviour observed 4 see my talk Wednesday

handle on viscosity ? v (not widely appreciated)

blast-induced geometric Al, O atoms K, Tt hadrons

substructure, speciation

generation of new, exotic stable  bcc Al anti-(hyper) nuclei
structures in shocked region
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Summary — Parallel programs & message from STAR

I s s

in-principle relevance to larger planets, Big Bang

systems inertial-confinement fusion

sequence of events rapid energy deposition 2 deconfinement transition = plasma hydro
anisotropic expansion = cooling & re-confinement, new states

excitation function of F.O. shape 4

sensitive to EoS

threshold behaviour observed 4 see my talk Wednesday

handle on viscosity ? v/ (not widely appreciated)

blast-induced geometric Al, O atoms K,  hadrons

substructure, speciation

generation of new, exotic stable  bcc Al anti-(hyper) nuclei
structures in shocked region

® Tremendous structure and physics in a condensed-matter
approach to dynamic explosions.

® Can our fields learn more from each other?
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