A condensed matter approach to dynamic systems at the micrometer and femtometer scales A Tale of Two Programs

> Mike Lisa Ohio State University

Outline

- Introduction to micro-explosions RHIC's big brother
- Energy dependence of the anisotropic freezeout shape
 - micro-explosions
 - femto-explosions
 - connection to QGP viscosity

• Geometric substructure of the shocked region, speciation

- femto-explosions
- micro-explosions

• Blast creation of exotic, new forms of confined matter

- micro-explosions
- femto-exploations
- Summary

Ultra-cold atomic gas

(model of) heavy ion collision

2.0

6.0 fm/c

8.0 fm/c

100 µs 0 fm/c "Universal" elliptic flow of strongly-interacting systems 200 µs Sensitivity to phase structure? 2 fm/c 400 µs Differences (besides size, temperature): timescale • 600 µs initial state: violent vs prepared • 4 fm/c thermalization? homo- vs hetero-geneous 800 µs • 6.0 fm technique: "movie versus postmortem" • 1000 µs 6 fm/c 1500 µs 8.0 fm/c 8 fm/c 2000 µs

S. Juodkazis,¹ K. Nishimura,¹ S. Tanaka,¹ H. Misawa,¹ E. G. Gamaly,² B. Luther-Davies,² L. Hallo,³ P. Nicolai,³ and V. T. Tikhonchuk³

¹CREST-JST and Research Institute for Electronic Science, Hokkaido University, N21-W10, CRIS Building, Kita-ku, Sapporo 001-0021, Japan

²Centre for Ultrahigh Bandwidth Devices for Optical Systems, Laser Physics Centre, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia ³Centre Lasers Intenses et Applications, UMR 5107 CEA CNRS - Université Bordeaux 1, 33405 Talence, Cedex, France (Received 24 November 2005; published 25 April 2006)

Extremely high pressures (~10 TPa) and temperatures (5×10^5 K) have been produced using a single laser pulse (100 nJ, 800 nm, 200 fs) focused inside a sapphire crystal. The laser pulse creates an intensity over 10^{14} W/cm² converting material within the absorbing volume of ~0.2 μ m³ into plasma in a few fs. A pressure of ~10 TPa, far exceeding the strength of any material, is created generating strong shock and rarefaction waves. This results in the formation of a nanovoid surrounded by a shell of shock-affected material inside undamaged crystal. Analysis of the size of the void and the shock-affected zone versus the deposited energy shows that the experimental results can be understood on the basis of conservation laws and be modeled by plasma hydrodynamics. Matter subjected to record heating and cooling rates of

tudied in a well-controlled laboratory environment.

S. Juodkozie¹ K. Nichimura¹ S. Tanaka¹ H. Micawa¹ F. C. Camalu² P. Luther Davias²

S. Juodkazie ¹ K. Nichimura ¹ S. Tanaka ¹ H. Micawa ¹ E. C. Camaly ² P. Luther Davies ²

S. Juodkazie ¹ K. Nichimura ¹ S. Tanaka ¹ H. Micawa ¹ F. C. Camaly ² P. Luther Davies ²

Image: Construction of the second	tudied in a well-contr	olled laboratory environment.	100° Void Amorphous
		Microexplosions	Femtoexplosions
E 4 Rarefaction wave	√s		
	3	10 ¹⁷ J/m ³	5 GeV/fm ³ = 10 ³⁶ J/m ³
0.0 0.1 0.2 0.3 (a) Radius (μm)	Т	10 ⁶ K	200 MeV = 10 ¹² K
	rate	10 ¹⁸ K/sec	10 ³⁵ K/s
ternational Conference on New Frontiers in Physic	s - Crete - August 201	3 - M.A. Lisa	

S Juodkazie ¹ K Nichimura ¹ S Tanaka ¹ H Micawa ¹ E C Camaly ² P Luther Davies ²

e 2 2ps 2ps d 1 3ps Shock wave d 0 1	tudied in a well-contract	rolled laboratory environment.	Void Amorphous	(b)
20 10 ⊢ 0		Microexplosions	Femtoexplosions	· -
E 4 Rarefaction wave	√s	0.1 µJ	1 µJ	R.
5 2	3	10 ¹⁷ J/m ³	5 GeV/fm ³ = 10 ³⁶ J/m ³	
0.0 0.1 0.2 0.3 (a) Radius (μm)	Т	10 ⁶ K	200 MeV = 10 ¹² K	
······	rate	10 ¹⁸ K/sec	10 ³⁵ K/s	
ternational Conference on New Frontiers in Phys	ics - Crete - August 202	13 - M.A. Lisa		13

S Juodkazie ¹ K Nichimura ¹ S Tanaka ¹ H Micawa ¹ E C Camaly ² P Luther Davies ²

g S

PHYSICAL REVIEW B 76, 024101 (2007)

Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation

Ludovic Hallo,^{1,*} Antoine Bourgeade,² Vladimir T. Tikhonchuk,¹ Candice Mezel,¹ and Jérome Breil¹ ¹Université Bordeaux 1, CNRS, CEA, UMR 5107, 33405 Talence Cedex, France ²CEA-CESTA, BP 1, 33114 Le Barp, France (Received 30 March 2007; published 2 July 2007)

results can be understood on the basis of conservation laws and be modeled by **plasma** hydrodynamics. Matter subjected to record heating and cooling rates of 10¹⁸ K/s can, thus, be studied in a well-controlled laboratory environment.

ete - Augi

examine final anisotropy of system

RHIC BES-I

arXiv:1007.2613

Energies chosen to cover the interesting transition region dictated by the scale of the theory (not highest energy possible)

Azimuthal dependence of HBT radii at RHIC

- no non-monotonic or threshold behaviour
- remarkably (depressingly) consistent with **pre**diction using soft hadronic EoS with realistic freezeout
- But results may provide the key to something at least as fundamental... (next)

- Two initial-state/viscosity combinations that give degenerate results in azimuthal *momentum* space, are **non-degenerate in azimuthal** *coordinate* **space**
 - an important handle on a fundamental QCD coefficient

ON THE "SHOCKED" AFTERMATH

Beyond overall shape:

Geometric substructure, speciation and exotic states of (confined) matter

Speciation: Extracting the source characteristics

Spherical harmonic decomposition $R_{l,m}(|\vec{k}^*|) \equiv \int d\Omega \ R(\vec{k}^*) Y_{l,m}(\Omega)$ $S_{l,m}(|\vec{r}|) \equiv \int d\Omega \ S(\vec{r}) Y_{l,m}(\Omega)$ $R_{l,m}(|k^*|) = \int dr \ S_{l,m}(r) K_l(|k^*|, r)$

Brown, Danielewicz, Pratt et al '05 Chajecki & Lisa '05 Brown & Kisiel '08

Speciation in 0-5% Central Au+Au @ 200 GeV

- Narrow Coulomb hole ← large source
- Significant asymmetry in correlation function
- First such high-quality data
- consistent with blast scenario

"Surprising speciation" substructure discovered in microexplosions in sapphire Distance from center Vailionis et al, Nature Comm. DOI: 10.1038 (2011) ~360 nm (shell boundary) Fast quenching ~180 nm (void boundary) Ion diffusion Average Al-O ~30 nm separation (absorbing region) ~ 18 nm AI Plasma expansion Shock front Time t₂ t_3 t₄ I1 ~100 fs ~1 ps ~100 ps ~1 ns

"exotic" bcc-Al from ultra-high pressure blast

(first observation; may play role in planetary core)

Vailionis et al, Nature Comm. DOI: 10.1038 (2011)

Generation of novel, exotic form of stable matter in femtoexplosions

Science 328, 58 (2010)

STAR discovers the first anti-strange anti-nucleus

Nature 473, 353 (2011)

STAR discovers the heaviest anti-nucleus

Pushing the boundary of nuclear structure physics

	micro-explosions	femto-explosions
in-principle relevance to larger systems	planets, inertial-confinement fusion	Big Bang
	AT MALE	
	111/ Participant	
	W K C	
1 AN -		

	micro-explosions	femto-explosions
in-principle relevance to larger systems	planets, inertial-confinement fusion	Big Bang
sequence of events	rapid energy deposition \rightarrow deconfinement transition \rightarrow plasma hydro anisotropic expansion \rightarrow cooling & re-confinement, new states	
	111 percent	
	A LE COM	
0000		

	micro-explosions	femto-explosions
in-principle relevance to larger systems	planets, inertial-confinement fusion	Big Bang
sequence of events	rapid energy deposition \rightarrow deconfinement transition \rightarrow plasma hydro anisotropic expansion \rightarrow cooling & re-confinement, new states	
excitation function of F.O. shape sensitive to EoS		
threshold behaviour observed		see my talk Wednesday
handle on viscosity	?	✓ (not widely appreciated)

	micro-explosions	femto-explosions
in-principle relevance to larger systems	planets, inertial-confinement fusion	Big Bang
sequence of events	rapid energy deposition \rightarrow deconfinement transition \rightarrow plasma hydro anisotropic expansion \rightarrow cooling & re-confinement, new states	
excitation function of F.O. shape sensitive to EoS		
threshold behaviour observed		see my talk Wednesday
handle on viscosity	?	✓ (not widely appreciated)
blast-induced geometric substructure, speciation	Al, O atoms	K, π hadrons
generation of new, exotic stable structures in shocked region	bcc Al	anti-(hyper) nuclei

	micro-explosions	femto-explosions
in-principle relevance to larger systems	planets, inertial-confinement fusion	Big Bang
sequence of events	rapid energy deposition \rightarrow deconfinement transition \rightarrow plasma hydr anisotropic expansion \rightarrow cooling & re-confinement, new states	
excitation function of F.O. shape sensitive to EoS		
threshold behaviour observed		see my talk Wednesday
handle on viscosity	?	✓ (not widely appreciated)
blast-induced geometric substructure, speciation	Al, O atoms	K, π hadrons
generation of new, exotic stable structures in shocked region	bcc Al	anti-(hyper) nuclei
 Tremendous structure and physics in a condensed-matter approach to dynamic explosions. Can our fields learn more from each other? 		