Novel Temporal Paradoxes in QM Offering Insights to the Nature of Time

Avshalom C. Elitzur¹, Eliahu Cohen²

¹Iyar, The Israeli Institute for Advanced Research, Rehovot, Israel avshalom@iyar.org.il

²School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 69978, Israel

Outline

1. I hate the Block Universe

- 2. EPR: it's about time to revisit time
- 3. EPR time-reversed => Becoming

4. EPR + weak measurement => Block Universe

5. Eppur si muove!

Copyleft – All rights reversed

Permission is granted to everyone to copy and/or use this work or any part of it.

ICNFP 2013

1. I hate the Block Universe

Time: The Common View Events Become and Go, One by One

Time: The Relativistic View

All Events Coexist along Time

2. EPR: it's about time to revisit time

?

A pre-existing spin, to be just *detected* or

A superposed state, to *become definite* upon measurement?

Bell's Proof (1964)

Alice and Bob can freely choose *at the last moment* the spin orientation to be measured.

Conclusion:

No pre-established spins can exist for every possible pair of choices

3. EPR time-reversed => Becoming

The Elitzli's Dokt of Panticle Tiele Pathydox: 3Repkible Questions wers

1. Is your spin "up" in the α direction? 50% "Yes", 50% "No"

2. Is your spin "up" in the β direction?

3. As recognous peint angleid which the other? particle? 50% "Yes", 50% "No"

The Elitzur-Dolev Quantum Liar Paradox

Remember: Quantum Ignorance is Power!

• Two excited atoms A1 and A2 reside in cavities facing a beam-splitter

- One detector clicks, source of the photon uncertain
- Thereby entangling the two atoms
- An orthogonal measurement to excited/ground is introduced
- EPR
- Bell's-proof holds
- The Quantum Liar Paradox

groited state

The Quantum Liar Paradox

- One atom is found to be excited, which seems to indicate that it has emitted no photon.
- Hence, it could not interact with the other atom and should not be entangled with it.
- But, by violating Bell's inequality, its "having preserved its photon" is due to entanglement with the other atom!

Большая Советская Энциклопедия

History, The Soviet Encyclopedia's Version

When the "hero of the people" former KGB head is shot as a traitor, you take back old volumes of the encyclopedia, take out the pages of the entry "Beria" and replace them with "Bering."

Our Relativistic Quantum Model

Could Nature be similarly reiterating a process's evolution at the quantum level?

4. EPR + weak measurement => Block Universe

Standard Quantum Measurement of a Particle's Spin

Weak Quantum Measurement of a Particle's Spin

Weak Measurement

- Can be described by the Hamiltonian: $H(t) = \frac{\lambda}{\sqrt{N}}g(t)A_sP_d$
- * In order to get blurred results we choose a pointer with zero expectation and $\delta \gg \frac{\lambda}{\sqrt{N}}$ standard deviation.
- * This way, when measuring a single spin, we get most results within the wide range of signal and noise $\frac{\lambda}{\sqrt{N}} \pm \delta$, but when summing up the results, most of them appear in the narrow range $\frac{\lambda\sqrt{N}}{2} \pm \frac{\delta\sqrt{N}}{\sqrt{2}}$, agreeing with the strong results when $\lambda \gg \delta$.

Why "Weak Measurement"?

Signal overcomes noise.

$$\frac{\Delta s}{s} \Rightarrow \frac{\sqrt{n}\Delta s}{ns} = \frac{\Delta s}{\sqrt{n}s} \to 0$$

$$[\sigma_i,\sigma_j] = 2i\varepsilon_{ijk}\sigma_k$$

Rute when carried out of manyle particles; it here measurement.

A metaphysical question gets an empirical twist:

What is a particle's state between two measurements?

The Two State-Vector Formalism:

Weak Measurement gives a New Account of Time

J. S. Bell's Proof (1964)

Alice and Bob can freely choose *at the last moment* the spin orientation to be measured.

Conclusion:

No pre-established spins can exist for every possible pair of choices

A Quantum Experiment with Causality: EPR Pairs

→ space

time

Quantum Nonlocality Naturalized

Chronology is Protected

The fact that the future choice has been somehow encrypted within past measurement results is revealed only after the choice is actually made.

References

- 1. Aharonov Y., Bergman P.G., Lebowitz J.L. (1964), Time symmetry in quantum process of measurement, *Phys. Rev.* 134.
- 2. Aharonov Y., Rohrlich D. (2005), *Quantum paradoxes: Quantum theory for the perplexed*, ch. 7-8, Wiley, Weinheim.
- 3. Elitzur A. C., Cohen E. (2011), The retrocausal nature of quantum measurement revealed by partial and weak measurements. In Sheehan, D. [Ed.] *Quantum Retrocausation: Theory and Experiment. AIP Conference Proceedings* 1408: 120-131.
- 4. Aharonov Y., Cohen E., Elitzur A.C. (2012), Strength in Weakness: Broadening the Scope of Weak Quantum Measurement. Submitted to *Phys. Rev. A*. http://arxiv.org/abs/1207.0655.
- 5. Aharonov Y., Cohen E., Elitzur A.C. (2012), Coexistence of past and future measurements' effects, predicted by the Two-State-Vector-Formalism and revealed by weak measurement. Submitted to *Phys. Rev. A.* http://arxiv.org/abs/1207.0667.
- 6. Aharonov Y., Cohen E., Grossman D., Elitzur A.C. (2012), Can a future choice affect a past measurement's outcome? http://arxiv.org/abs/1206.6224.

5. Eppur si muove!