Model Independent Constraints on the C_i

Danny van Dyk TU Dortmund

Workshop on the physics reach of rare an exclusive B decays

University of Sussex, Brighton September 2012

N Groups, N+1 Methods

Objective

- **•** sample the probability distribution of the Wilson Coefficients C_i
- use inputs from various sources, perform a global fit
- find credibility regions for C_i

N Groups, N + 1 Methods

Objective + Issues

- sample the probability distribution of the Wilson Coefficients C_i issue: which operators should be considered? increasing complexity!
- use inputs from various sources, perform a global fit issue: which inputs to select? increasing duration of analyses
- Find credibility regions for C_i issue: how to present? C_i(μ_b)? C_i(M_W)? numbers vs expansion in α_s?

N Groups, N + 1 Methods

Sampling

- Grid-based Sampling
 Evaluate pdf on equidistantly spaced grid [0805.2525], [1006.5013], [1104.3342]
- Importance Sampling Markov Chains[1111.1257],[1207.2753] or Markov Chains + Population Monte Carlo[1205.1838] are used to explore parameter space

N Groups, N + 1 Methods

Sampling

- Grid-based Sampling
 Evaluate pdf on equidistantly spaced grid [0805.2525], [1006.5013], [1104.3342]
- Importance Sampling Markov Chains_[1111.1257],_[1207.2753] or Markov Chains + Population Monte Carlo_[1205.1838] are used to explore parameter space

Personal Conclusion

Importance sampling is step in the right direction, but beware of pitfalls! MC might miss modes of the pdfs (convergence criteria important). MCMC + PMC large step towards "black box" Monte Carlo.

N Groups, N+1 Methods

Theory Uncertainties

Treat theory uncertainties via

- combination [1111.1257] [1207.2753] $\sigma^2 = \sigma_{th}^2 + \sigma_{exp}^2$
- Rfit [hep-ph/0104062], used in [1006.5013]
 within theory unc.: max. likelihood, outside: gauss w/ exper. error
- Bayesian approach [1205.1838] introduce nuisance parameters to treat uncertainties, marginalise

from [hep-ph/0104062]

N Groups, N+1 Methods

Theory Uncertainties

Treat theory uncertainties via

- combination [1111.1257] [1207.2753] $\sigma^2 = \sigma_{th}^2 + \sigma_{exp}^2$
- Rfit [hep-ph/0104062], used in [1006.5013] within theory unc.: max. likelihood, outside: gauss w/ exper. error
- Bayesian approach [1205.1838] introduce nuisance parameters to treat uncertainties, marginalise

Personal Conclusion

Results currently comparable for all methods. Bayesian approach also yields information re uncertainties! Important check of theory inputs (hadronic matrix elements, unknown $1/m_b$ contributions, ...)

from [hep-ph/0104062]

Results

Results of groups are hard to compare

- (A) Altmannshofer et al. [1111.1257]
 - fit NP contributions at high scale $\mu_0 \simeq 2M_W$

$$\triangleright \ \mathcal{C}_i(\mu_0) = \delta \mathcal{C}_i + \sum_{n=0}^2 \left(\frac{\alpha_s}{4\pi}\right)^n \mathcal{C}_i^{\mathrm{SM},(n)}$$

(B) Bobeth et al. [1205.1838]

- ▶ fit NP contributions at low scale $\mu_b \simeq m_b$
- Fit full wilson coefficient $C_i(\mu_b)$ as a number, not as a series in α_s
- ▶ only exclusive decays: $B \to K^* \gamma$, $B \to K^{(*)} \ell^+ \ell^-$, $B_s \to \ell^+ \ell^-$

(C) Descotes-Genon et al. [1207.2753]

- fit NP contributions at low scale $\mu_b \simeq m_b$
- do not consider the same scenarios as (B)

Results from (B) at low scale

95% credibility regions

all regions include $B \to K^* \gamma$ inputs brown incl. $B \to K \ell^+ \ell^-$ (high + low) blue incl. $B \to K^* \ell^+ \ell^-$ (low) green incl. $B \to K^* \ell^+ \ell^-$ (high) light red all data $+ B_s \to \mu^+ \mu^-$

Danny van Dyk (TU Dortmund)

Results from (B) at low scale

color: normal priors (dark: 68%, light: 95%) lines: wide priors (solid: 68%, dashed: 95%)

diamond: SM, cross: MAP

Results from (B) at low scale

	C ₇	\mathcal{C}_{9}	C_{10}
68%	$[-0.34, -0.23] \cup [0.35, 0.45]$	$[-5.2, -4.0] \cup [3.1, 4.4]$	$[-4.4, -3.4] \cup [3.3, 4.3]$
95%	$[-0.41, -0.19] \cup [0.31, 0.52]$	$[-5.9, -3.5] \cup [2.6, 5.2]$	$[-4.8, -2.8] \cup [2.7, 4.7]$
max	$-0.28 \cup 0.40$	$-4.56 \cup 3.64$	$-3.92 \cup 3.86$
68%	$[-0.39, -0.19] \cup [0.30, 0.48]$	$[-5.6, -3.8] \cup [2.9, 5.1]$	[-4.0, -2.5] U [2.6, 3.9]
95%	$[-0.53, -0.13] \cup [0.24, 0.61]$	$[-6.7, -3.1] \cup [2.2, 6.2]$	$[-4.7, -1.9] \cup [2.0, 4.6]$
max	$-0.30 \cup 0.38$	$-4.64 \cup 3.84$	$-3.24 \cup 3.30$

upper: normal priors lower: wide priors

Very good agreement with the SM! From 59 exper. inputs, only one pull $> 2\sigma!$ ($\mathcal{B}[B \to K^* \ell^+ \ell^-]_{>16}$ Belle)

Results from (B) for nuisance parameters

 $B \to K \ell^+ \ell^-$

 $B \to K^* \ell^+ \ell^-$

 $f_+(q^2)$ form factor, two parameters, z parametrisation dotted: prior dashed: only $B \to K \ell^+ \ell^-$ data

solid: all data

 $V(q^2) \rightarrow \zeta_V V(q^2)$, etc. considerable shifts ($\sim 10\%$) in Vand A_2 !

Improvements (Theory)

$1/m_b$ Subleading Contributions (SL)

- So far SL contributions constants, i.e., no functional dependence on q². Room for improvements?
- At high q², the SL contributions for different transversity amplitudes are correlated. What about low q²?
- ▶ Is it benefitial to calculate remaining $1/m_b$ corrections?
- At low q²: self consistency of X_⊥ in B → K*γ vs B → K*ℓ⁺ℓ[−]. For B → K*γ, regularisation is needed, for B → K*ℓ⁺ℓ[−] there is no need. Leads to problem in limit q² → 0 for B → K*ℓ⁺ℓ[−] observables, e.g. A_I.

Improvements (Theory)

Residual Renormalization Scale Dependence

- ▶ binned A_{FB} at low q², as well as its zero crossing q₀² have large µ dependence in NLO calculations.
- with increasing experimental precision (finer bins), C_i results will show μ_b dependence.
- NNLO calculation needed?
- Consider μ_b -variation in fits, extract "true"/"intrinsic" value of μ_b ?

Improvements (Theory)

Residual Renormalization Scale Dependence

- ▶ binned A_{FB} at low q², as well as its zero crossing q₀² have large µ dependence in NLO calculations.
- with increasing experimental precision (finer bins), C_i results will show μ_b dependence.
- NNLO calculation needed?
- ▶ Consider μ_b -variation in fits, extract "true" / "intrinsic" value of μ_b ?

Personal Conclusion

Extraction of μ feasible albeit computationally expensive, since running of $\mathcal{C}_{1\dots6.8}$ must be included.

Improvements (Experiment)

Do not use model assumptions ($J_{1c} \sim J_{2c}$, etc.) for fits! Problem with definitions of F_L , F_T arise. From distribution in $\cos \theta_{K^*}$:

$$\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d}\cos\theta_{K^*}} = \frac{3}{2} \Big(\langle J_{1s} - \frac{1}{3}J_{2s}\rangle\sin^2\theta_{K^*} + \langle J_{1c} - \frac{1}{3}J_{2c}\rangle\cos^2\theta_{K^*} \Big) \\ \frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d}\cos\theta_{K^*}} = \frac{3}{2} \langle F_L\rangle\cos^2\theta_{K^*} + \frac{3}{4}\langle 1 - F_L\rangle\sin^2\theta_{K^*}$$

However, from distribution in $\cos \theta_{\ell}$:

$$\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d}\cos\theta_{\ell}} = \frac{1}{2} \Big(\langle 2J_{1s} + J_{1c}\rangle + \langle 2J_{6s} + J_{6c}\rangle\cos\theta_{\ell} + \langle 2J_{2s} + J_{2c}\rangle\cos2\theta_{\ell}\Big)$$
$$\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d}\cos\theta_{\ell}} = \frac{3}{4} \langle F_{L}\rangle (1 - \cos^{2}\theta_{\ell}) + \frac{3}{8} \langle 1 - F_{L}\rangle (1 + \cos^{2}\theta_{\ell}) + \langle A_{\mathrm{FB}}\rangle\cos\theta_{\ell}$$

With scalar/tensor operators and for $m_{\ell} \neq 0$:

 $F_L(J_{1c}, J_{2c}) \neq F_L(J_{1s}, J_{1c}, J_{2s}, J_{2c})$

Improvements (Experiment)

- ▶ provide correlation between q^2 bins (gaussian?) covariance matrix, BaBar do this for $B \rightarrow \pi \ell \nu$ bins, see e.g. [1005.3288]
- provide correlation between observables in the same bin perhaps as (gaussian?) covariance matrix available e.g. for S_{K*γ}, C_{K*γ}
- ultimately: (marginalised!) likelihood surfaces for all bins of the observables would be appreciated Discussion: How to provide it?

Summary

- ▶ No NP yet! SM fits very well.
- ▶ Model Independent Analysis: real-valued $C_{7,9,10}$ suffice (so far!).
- More statistics, more inputs, more correlations needed.