Model Independent Constraints on the \mathcal{C}_{i}

Danny van Dyk
TU Dortmund

Workshop on the physics reach of rare an exclusive B decays
University of Sussex, Brighton
September 2012

N Groups, $N+1$ Methods

Objective

- sample the probability distribution of the Wilson Coefficients \mathcal{C}_{i}
- use inputs from various sources, perform a global fit
- find credibility regions for \mathcal{C}_{i}

N Groups, $N+1$ Methods

Objective + Issues

- sample the probability distribution of the Wilson Coefficients \mathcal{C}_{i} issue: which operators should be considered? increasing complexity!
- use inputs from various sources, perform a global fit issue: which inputs to select? increasing duration of analyses
- find credibility regions for \mathcal{C}_{i} issue: how to present? $\mathcal{C}_{i}\left(\mu_{b}\right)$? $\mathcal{C}_{i}\left(M_{W}\right)$? numbers vs expansion in α_{s} ?

N Groups, $N+1$ Methods

Sampling

- Grid-based Sampling

Evaluate pdf on equidistantly spaced grid [0805.2525], [1006.5013], [1104.3342]

- Importance Sampling

Markov Chains[[1111.1257],[1207.2753] or Markov Chains + Population Monte Carlo[1205.1838] are used to explore parameter space

N Groups, $N+1$ Methods

Sampling

- Grid-based Sampling

Evaluate pdf on equidistantly spaced grid [0805.2525], [1006.5013], [1104.3342]

- Importance Sampling

Markov Chains[1111.1257],[1207.2753] or Markov Chains + Population Monte Carlo[1205.1838] are used to explore parameter space

Personal Conclusion

Importance sampling is step in the right direction, but beware of pitfalls! MC might miss modes of the pdfs (convergence criteria important). MCMC + PMC large step towards "black box" Monte Carlo.

N Groups, $N+1$ Methods

Theory Uncertainties

Treat theory uncertainties via

- combination [1111.1257] [1207.2753]

$$
\sigma^{2}=\sigma_{\mathrm{th}}^{2}+\sigma_{\mathrm{exp}}^{2}
$$

- Rfit [hep-ph/0104062], used in [1006.5013] within theory unc.: max. likelihood, outside: gauss w/ exper. error
- Bayesian approach [1205.1838] introduce nuisance parameters to treat uncertainties, marginalise

N Groups, $N+1$ Methods

Theory Uncertainties

Treat theory uncertainties via

- combination [1111.1257] [1207.2753] $\sigma^{2}=\sigma_{\mathrm{th}}^{2}+\sigma_{\exp }^{2}$
- Rfit [hep-ph/0104062], used in [1006.5013] within theory unc.: max. likelihood, outside: gauss w/ exper. error
- Bayesian approach [1205.1838]

from [hep-ph/0104062] introduce nuisance parameters to treat uncertainties, marginalise

Personal Conclusion

Results currently comparable for all methods. Bayesian approach also yields information re uncertainties! Important check of theory inputs (hadronic matrix elements, unknown $1 / m_{b}$ contributions, ...)

Results

Results of groups are hard to compare
(A) Altmannshofer et al. [1111.1257]

- fit NP contributions at high scale $\mu_{0} \simeq 2 M_{W}$
- $\mathcal{C}_{i}\left(\mu_{0}\right)=\delta \mathcal{C}_{i}+\sum_{n=0}^{2}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} \mathcal{C}_{i}^{S M,(n)}$
(B) Bobeth et al. [1205.1838]
- fit NP contributions at low scale $\mu_{b} \simeq m_{b}$
- fit full wilson coefficient $\mathcal{C}_{i}\left(\mu_{b}\right)$ as a number, not as a series in α_{s}
- only exclusive decays: $B \rightarrow K^{*} \gamma, B \rightarrow K^{(*)} \ell^{+} \ell^{-}, B_{s} \rightarrow \ell^{+} \ell^{-}$
(C) Descotes-Genon et al. [1207.2753]
- fit NP contributions at low scale $\mu_{b} \simeq m_{b}$
- do not consider the same scenarios as (B)

Results from (B) at low scale

 95% credibility regions

all regions include $B \rightarrow K^{*} \gamma$ inputs brown incl. $B \rightarrow K \ell^{+} \ell^{-}$(high + low) blue incl. $B \rightarrow K^{*} \ell^{+} \ell^{-}$(low)
green incl. $B \rightarrow K^{*} \ell^{+} \ell^{-}$(high) light red all data $+B_{s} \rightarrow \mu^{+} \mu^{-}$ dark red same at 65\%

Results from (B) at low scale

color: normal priors (dark: 68\%, light: 95\%) lines: wide priors (solid: 68%, dashed: 95%) diamond: SM, cross: MAP

Results from (B) at low scale

	\mathcal{C}_{7}	\mathcal{C}_{9}	\mathcal{C}_{10}
68%	$[-0.34,-0.23] \cup[0.35,0.45]$	$[-5.2,-4.0] \cup[3.1,4.4]$	$[-4.4,-3.4] \cup[3.3,4.3]$
95%	$[-0.41,-0.19] \cup[0.31,0.52]$	$[-5.9,-3.5] \cup[2.6,5.2]$	$[-4.8,-2.8] \cup[2.7,4.7]$
\max	$-0.28 \cup 0.40$	$-4.56 \cup 3.64$	$-3.92 \cup 3.86$
68%	$[-0.39,-0.19] \cup[0.30,0.48]$	$[-5.6,-3.8] \cup[2.9,5.1]$	$[-4.0,-2.5] \cup[2.6,3.9]$
95%	$[-0.53,-0.13] \cup[0.24,0.61]$	$[-6.7,-3.1] \cup[2.2,6.2]$	$[-4.7,-1.9] \cup[2.0,4.6]$
\max	$-0.30 \cup 0.38$	$-4.64 \cup 3.84$	$-3.24 \cup 3.30$

upper: normal priors
lower: wide priors
Very good agreement with the SM!
From 59 exper. inputs, only one pull $>2 \sigma!\left(\mathcal{B}\left[B \rightarrow K^{*} \ell^{+} \ell^{-}\right]_{>16}\right.$ Belle $)$

Results from (B) for nuisance parameters

$B \rightarrow K \ell^{+} \ell^{-}$

$f_{+}\left(q^{2}\right)$ form factor, two parameters, z parametrisation dotted: prior dashed: only $B \rightarrow K \ell^{+} \ell^{-}$data solid: all data
$B \rightarrow K^{*} \ell^{+} \ell^{-}$

$V\left(q^{2}\right) \rightarrow \zeta_{V} V\left(q^{2}\right)$, etc. considerable shifts ($\sim 10 \%$) in V and A_{2} !

Improvements (Theory)

$1 / m_{b}$ Subleading Contributions (SL)

- So far SL contributions constants, i.e., no functional dependence on q^{2}. Room for improvements?
- At high q^{2}, the SL contributions for different transversity amplitudes are correlated. What about low q^{2} ?
- Is it benefitial to calculate remaining $1 / m_{b}$ corrections?
- At low q^{2} : self consistency of X_{\perp} in $B \rightarrow K^{*} \gamma$ vs $B \rightarrow K^{*} \ell^{+} \ell^{-}$. For $B \rightarrow K^{*} \gamma$, regularisation is needed, for $B \rightarrow K^{*} \ell^{+} \ell^{-}$there is no need. Leads to problem in limit $q^{2} \rightarrow 0$ for $B \rightarrow K^{*} \ell^{+} \ell^{-}$observables, e.g. A_{I}.

Improvements (Theory)

Residual Renormalization Scale Dependence

- binned $A_{\text {FB }}$ at low q^{2}, as well as its zero crossing q_{0}^{2} have large μ dependence in NLO calculations.
- with increasing experimental precision (finer bins), \mathcal{C}_{i} results will show μ_{b} dependence.
- NNLO calculation needed?
- Consider μ_{b}-variation in fits, extract "true" / "intrinsic" value of μ_{b} ?

Improvements (Theory)

Residual Renormalization Scale Dependence

- binned $A_{\text {FB }}$ at low q^{2}, as well as its zero crossing q_{0}^{2} have large μ dependence in NLO calculations.
- with increasing experimental precision (finer bins), \mathcal{C}_{i} results will show μ_{b} dependence.
- NNLO calculation needed?
- Consider μ_{b}-variation in fits, extract "true" / "intrinsic" value of μ_{b} ?

Personal Conclusion

Extraction of μ feasible albeit computationally expensive, since running of $\mathcal{C}_{1 \ldots 6,8}$ must be included.

Improvements (Experiment)

Do not use model assumptions ($J_{1 c} \sim J_{2 c}$, etc.) for fits! Problem with definitions of F_{L}, F_{T} arise. From distribution in $\cos \theta_{K^{*}}$:

$$
\begin{aligned}
\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d} \cos \theta_{K^{*}}} & =\frac{3}{2}\left(\left\langle J_{1 s}-\frac{1}{3} J_{2 s}\right\rangle \sin ^{2} \theta_{K^{*}}+\left\langle J_{1 c}-\frac{1}{3} J_{2 c}\right\rangle \cos ^{2} \theta_{K^{*}}\right) \\
\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d} \cos \theta_{K^{*}}} & =\frac{3}{2}\left\langle F_{L}\right\rangle \cos ^{2} \theta_{K^{*}}+\frac{3}{4}\left\langle 1-F_{L}\right\rangle \sin ^{2} \theta_{K^{*}}
\end{aligned}
$$

However, from distribution in $\cos \theta_{\ell}$:

$$
\begin{aligned}
\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d} \cos \theta_{\ell}} & =\frac{1}{2}\left(\left\langle 2 J_{1 s}+J_{1 c}\right\rangle+\left\langle 2 J_{6 s}+J_{6 c}\right\rangle \cos \theta_{\ell}+\left\langle 2 J_{2 s}+J_{2 c}\right\rangle \cos 2 \theta_{\ell}\right) \\
\frac{\mathrm{d}\langle\Gamma\rangle}{\mathrm{d} \cos \theta_{\ell}} & =\frac{3}{4}\left\langle F_{L}\right\rangle\left(1-\cos ^{2} \theta_{\ell}\right)+\frac{3}{8}\left\langle 1-F_{L}\right\rangle\left(1+\cos ^{2} \theta_{\ell}\right)+\left\langle A_{\mathrm{FB}}\right\rangle \cos \theta_{\ell}
\end{aligned}
$$

With scalar/tensor operators and for $m_{\ell} \neq 0$:

$$
F_{L}\left(J_{1 c}, J_{2 c}\right) \neq F_{L}\left(J_{1 s}, J_{1 c}, J_{2 s}, J_{2 c}\right)
$$

Improvements (Experiment)

- provide correlation between q^{2} bins (gaussian?) covariance matrix, BaBar do this for $B \rightarrow \pi \ell \nu$ bins, see e.g. [1005.3288]
- provide correlation between observables in the same bin perhaps as (gaussian?) covariance matrix available e.g. for $S_{K^{*} \gamma}, C_{K^{*} \gamma}$
- ultimately: (marginalised!) likelihood surfaces for all bins of the observables would be appreciated Discussion: How to provide it?

Summary

- No NP yet! SM fits very well.
- Model Independent Analysis: real-valued $\mathcal{C}_{7,9,10}$ suffice (so far!).
- More statistics, more inputs, more correlations needed.

