Impact of $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$on the New Physics search in $B \rightarrow K^{*} \ell^{+} \ell^{-}$decay

Andrey Tayduganov ${ }^{a, b}$

Andrey.Tayduganov@th.u-psud.fr
in collaboration with D. Bečirević ${ }^{a}$
${ }^{a}$ Laboratoire de Physique Théorique d'Orsay
${ }^{b}$ Laboratoire de l'Accélérateur Linéaire
Université Paris-Sud 11
Workshop on the physics reach of rare and exclusive B decays
University of Sussex, 11.09.2012

Outline

(1) Motivation
(2) Scalar contribution to the angular distributions
(3) Conclusions and perspectives

- A problem is often ignored in the literature is the contamination of the angular distribution of $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$by the events coming from $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$. This effect was recently studied in the experimental analysis of e.g. $D \rightarrow K^{*} \mu \bar{\nu}_{\mu}$, and was shown to be important.
- For the transverse asymmetries this is not a problem because the product of the $K_{0}^{*} \rightarrow K \pi$ decay is in its S-wave and cannot make any impact on the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$transverse amplitudes.
- However, in the extraction of transverse asymmetries from the angular distributions the unwanted $(K \pi)_{S}$ from $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$are troublesome and result in an error that is q^{2}-dependent and can be large.

Full angular distribution

Full angular distributions in $B \rightarrow(K \pi)_{K^{*}+K_{0}^{*}} \ell^{+} \ell^{-}$is given as [Becirevic\&AT('12), arXiv:1207.4004]:

$$
\begin{aligned}
& \frac{d^{5} \Gamma}{d q^{2} d m_{K \pi}^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}= \\
& J_{1}^{c}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right)+2 J_{1}^{s}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \\
& +\left[J_{2}^{c}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right)+2 J_{2}^{s}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right)\right] \cos 2 \theta_{\ell} \\
& +2 J_{3}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin ^{2} \theta_{\ell} \cos 2 \phi \\
& +2 \sqrt{2} J_{4}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin \left(2 \theta_{\ell}\right) \cos \phi \\
& +2 \sqrt{2} J_{5}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin \theta_{\ell} \cos \phi \\
& +2 J_{6}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \cos \theta_{\ell} \\
& +2 \sqrt{2} J_{7}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin \theta_{\ell} \sin \phi \\
& +2 \sqrt{2} J_{8}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin 2 \theta_{\ell} \sin \phi \\
& +2 J_{9}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \sin ^{2} \theta_{\ell} \sin 2 \phi
\end{aligned}
$$

$J_{1,2,3,6,9}^{(s)}\left(q^{2}, m_{K \pi}^{2}, \theta_{K}\right) \propto \mathcal{I}_{1,2,3,6,9}^{(s)}\left(q^{2}\right) \sin ^{2} \theta_{K}$ - are the functions of $\mathcal{M}_{\|, \perp}$ only \Rightarrow NO $(K \pi)_{S}$ contribution from $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}+$have small hadronic uncertainties !

In ref. [Matias('12), arXiv:1209.1525] it was demonstrated that using the full folded distributions one can avoid the problem of the S-wave contribution and extract the clean observables,

$$
\begin{aligned}
& P_{1}\left(q^{2}\right)=\frac{\mathcal{I}_{3}\left(q^{2}\right)}{2 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \Leftrightarrow \mathcal{A}_{T}^{(2)}\left(q^{2}\right) \\
& P_{2}\left(q^{2}\right)=\beta_{\ell} \frac{\mathcal{I}_{6}\left(q^{2}\right)}{8 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \Leftrightarrow \mathcal{A}_{T}^{(\mathrm{re})}\left(q^{2}\right) \\
& P_{3}\left(q^{2}\right)=-\frac{\mathcal{I}_{9}\left(q^{2}\right)}{4 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \Leftrightarrow \mathcal{A}_{T}^{(\mathrm{im})}\left(q^{2}\right)
\end{aligned}
$$

in a way completely free from this pollution and in the exact lepton mass case.

- The folding exploits the angular symmetries of the distribution and reduce the number of coefficients. E.g. the initial number of \mathcal{I}_{i} 's, $10\left(K^{*}\right)+8\left(K_{0}^{*}\right)$, can be reduced to $7\left(K^{*}\right)+4\left(K_{0}^{*}\right)$ when using the "folded" angle $\hat{\phi} \in[0, \pi]$ $(\phi \leftrightarrow \phi+\pi$ when $\phi<0)$.

It is claimed that the deviation between the exact massive and massless predictions for the observables, integrated within $q^{2} \in[1,6] \mathrm{GeV}^{2}$, is small [Matias('12), arXiv:1209.1525].

Transverse asymmetries

We keep $m_{\ell} \neq 0$ since the lowest bins are the least ambiguous to test the NP. Moreover, in order to consistently combine $B \rightarrow K^{*} e^{+} e^{-}$and $B \rightarrow K^{*} \mu^{+} \mu^{-}$ decays at low q^{2}, the lepton mass effect should be taken into account.

$$
\begin{aligned}
\mathcal{A}_{T}^{(2)}\left(q^{2}\right) & =\frac{4 \mathcal{I}_{3}\left(q^{2}\right)}{3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)} \underset{m_{\ell} \rightarrow 0}{\longrightarrow} \frac{\mathcal{I}_{3}\left(q^{2}\right)}{2 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \underset{q^{2} \rightarrow 0}{\longrightarrow} \frac{2 \mathcal{R} e\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{7 \gamma}^{\prime}\right|^{2}} \\
\mathcal{A}_{T}^{(\mathrm{im})}\left(q^{2}\right) & =\frac{4 \mathcal{I}_{9}\left(q^{2}\right)}{3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)} \underset{m_{\ell} \rightarrow 0}{\longrightarrow} \frac{\mathcal{I}_{9}\left(q^{2}\right)}{2 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \underset{q^{2} \rightarrow 0}{\longrightarrow} \frac{2 \mathcal{I} m\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{7 \gamma}^{\prime}\right|^{2}} \\
\mathcal{A}_{T}^{(\mathrm{re})}\left(q^{2}\right) & =\frac{\beta_{\ell} \mathcal{I}_{6}\left(q^{2}\right)}{3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)} \underset{m_{\ell} \rightarrow 0}{\longrightarrow} \frac{\mathcal{I}_{6}\left(q^{2}\right)}{8 \mathcal{I}_{2}^{s}\left(q^{2}\right)} \Longleftrightarrow \mathcal{A}_{\mathrm{FB}}\left(q^{2}\right)
\end{aligned}
$$

- A common denominator is chosen for convenience.
- If the data sample is so large that all the coefficient functions $\mathcal{I}_{i}^{(s)}\left(q^{2}\right)$ can be reliably extracted from the full angular distribution, one can get the denominator unaffected by $(K \pi)_{S}$.
- If we study the distributions in ϕ, θ_{ℓ} and θ_{K} separately, then the denominator cannot be extracted without picking up the events coming from $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$.

The numerators in $\mathcal{A}_{T}^{(2, \mathrm{im}, \mathrm{re})}\left(q^{2}\right)$ are not plagued by $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$and can be extracted from the ϕ and θ_{ℓ} distributions,

$$
\begin{gathered}
\frac{d^{2} \Gamma}{d q^{2} d \phi}=a_{\phi}\left(q^{2}\right)+b_{\phi}^{c}\left(q^{2}\right) \cos \phi+b_{\phi}^{s}\left(q^{2}\right) \sin \phi+{c_{\phi}^{c}\left(q^{2}\right) \cos 2 \phi}^{c_{\phi}^{s}\left(q^{2}\right) \sin 2 \phi} \\
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{\ell}}=a_{\theta_{\ell}}\left(q^{2}\right)+b_{\theta_{\ell}\left(q^{2}\right) \cos \theta_{\ell}}+c_{\theta_{\ell}}\left(q^{2}\right) \cos ^{2} \theta_{\ell}
\end{gathered}
$$

where the coefficients of our interest must be identified as

$$
\begin{aligned}
& c_{\phi}^{c, s}\left(q^{2}\right)=\frac{4}{3 \pi} \mathcal{I}_{3,9}\left(q^{2}\right) \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2} \\
& b_{\theta_{\ell}}\left(q^{2}\right)=2 \mathcal{I}_{6}\left(q^{2}\right) \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}
\end{aligned}
$$

The other coefficients contain the K_{0}^{*} contribution as well as the longitudinal and "time-like" amplitudes of K^{*}, which involves the $B \rightarrow K^{*}$ form factors $A_{2,0}\left(q^{2}\right)$ and $T_{3}\left(q^{2}\right)$ which have large uncertainties.

$$
\frac{d^{2} \Gamma}{d q^{2} d \cos \theta_{K}}=a_{\theta_{K}}\left(q^{2}\right)+b_{\theta_{K}}\left(q^{2}\right) \cos \theta_{K}+c_{\theta_{K}}\left(q^{2}\right) \cos ^{2} \theta_{K}
$$

with

$$
\begin{aligned}
a_{\theta_{K}}\left(q^{2}\right)= & \frac{1}{8}\left\{\left[3 \mathcal{I}_{1}^{c \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right)\right] \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right. \\
& \left.+3\left[3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}\right\} \\
b_{\theta_{K}}\left(q^{2}\right)= & \frac{\sqrt{3}}{4} \int \mathcal{R} e\left[\left(3 \mathcal{I}_{1}^{c \prime \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime \prime}\left(q^{2}\right)\right) B W_{K_{0}^{*}} B W_{K^{*}}^{\dagger}\right] d m_{K \pi}^{2} \\
c_{\theta_{K}}\left(q^{2}\right)= & \frac{3}{8}\left\{3 \mathcal{I}_{1}^{c}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)-\left[3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)\right]\right\} \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}
\end{aligned}
$$

Studying the separate distributions one cannot extract $3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)$ and avoid the contribution from $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$.

$$
\begin{aligned}
a_{\theta_{K}}\left(q^{2}\right)= & \frac{1}{8}\left\{\left[3 \mathcal{I}_{1}^{c \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right)\right] \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right. \\
& \left.+3\left[3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}\right\} \\
= & \frac{3}{8}\left[3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)\right]\left(1+\Delta\left(q^{2}\right)\right) \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}
\end{aligned}
$$

Note that $\Delta\left(q^{2}\right)$ is not suppressed by factor m_{ℓ}^{2} / q^{2}.

Around $q^{2} \approx 2 \mathrm{GeV}^{2}$ as many as 25% events, recognized as $a_{\theta_{K}}\left(q^{2}\right)$ of $B \rightarrow K^{*} \ell^{+} \ell^{-}$, might be coming from $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$decay.
[Becirevic\&AT('12), arXiv:1207.4004]

Similar situation occurs in $B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$except that the effect of $B_{s} \rightarrow f_{0}(\rightarrow$ $\left.K^{+} K^{-}\right) \ell^{+} \ell^{-}$is smaller: it remains under 15% around $q^{2} \approx 2.5 \mathrm{GeV}^{2}$.

However, as was pointed out in ref. [Matias('12), arXiv:1209.1525], in the massless limit, $\mathcal{I}_{2}^{s}\left(q^{2}\right)$ can be determined from the combination of

$$
\begin{aligned}
a_{\phi}\left(q^{2}\right)= & \frac{1}{3 \pi}\left\{\left[3 \mathcal{I}_{1}^{c \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right)\right] \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right. \\
& \left.+\left[3 \mathcal{I}_{1}^{c}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)+6 \mathcal{I}_{1}^{s}\left(q^{2}\right)-2 \mathcal{I}_{2}^{s}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}\right\} \\
\simeq & \frac{4}{3 \pi}\left\{\left[4 \mathcal{I}_{2}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right) \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right\} \\
a_{\theta_{\ell}}\left(q^{2}\right)= & {\left[\mathcal{I}_{1}^{c \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right)\right] \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2} } \\
& +\left[\mathcal{I}_{1}^{c}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)+2 \mathcal{I}_{1}^{s}\left(q^{2}\right)-2 \mathcal{I}_{2}^{s}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2} \\
\simeq & 2\left\{\left[2 \mathcal{I}_{2}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)\right] \int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}-\mathcal{I}_{2}^{c}\left(q^{2}\right) \int\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right\} \\
\Longrightarrow & \mathcal{I}_{2}^{s}\left(q^{2}\right) \simeq \frac{1}{\int\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2}}\left[\pi a_{\phi}\left(q^{2}\right)-\frac{2}{3} a_{\theta_{\ell}}\left(q^{2}\right)\right]+\mathcal{O}\left(m_{\ell}^{2} / q^{2}\right)
\end{aligned}
$$

NB: The above assumption $m_{\ell} \rightarrow 0$ requires to abandon the principle of the transversity which then requires the knowledge of the $A_{0,2}\left(q^{2}\right)$ and $T_{3}\left(q^{2}\right)$. Corrections $\propto m_{\ell}^{2} / q^{2}$ are NOT negligible and might be problematic for $1<q^{2}<3 \mathrm{GeV}^{2}$ where $\mathcal{I}_{2}^{s}\left(q^{2}\right)$ has minimum.

Scalar contribution to the integrated decay rate

Integrated over 3 angles and $m_{K \pi}^{2}$, the distribution can be written as

$$
\begin{aligned}
& \frac{d \Gamma}{d q^{2}}=\frac{d \Gamma_{0}}{d q^{2}}+\frac{d \Gamma_{S}}{d q^{2}} \\
& \frac{d \Gamma_{0}}{d q^{2}}=\frac{1}{4}\left[3 \mathcal{I}_{1}^{c}\left(q^{2}\right)-\mathcal{I}_{2}^{c}\left(q^{2}\right)+2\left(3 \mathcal{I}_{1}^{s}\left(q^{2}\right)-\mathcal{I}_{2}^{s}\left(q^{2}\right)\right)\right] \int_{\left(m_{\left.K^{*}-\delta\right)^{2}}\right.}^{\left(m_{\left.K^{*}+\delta\right)^{2}}\right.}\left|B W_{K^{*}}\right|^{2} d m_{K \pi}^{2} \\
& \frac{d \Gamma_{S}}{d q^{2}}=\frac{1}{4}\left[3 \mathcal{I}_{1}^{c \prime}\left(q^{2}\right)-\mathcal{I}_{2}^{c \prime}\left(q^{2}\right)\right] \int_{\left(m_{K^{*}}-\delta\right)^{2}}^{\left(m_{K^{*}}^{*+\delta)^{2}}\left|B W_{K_{0}^{*}}\right|^{2} d m_{K \pi}^{2}\right.}
\end{aligned}
$$

Using $\delta^{\exp } \simeq 100 \mathrm{MeV}$, the inclusion of $K \pi$ from K_{0}^{*} amounts to at most 10% excess with respect to the desired $d \Gamma_{0} / d q^{2}$.
[Becirevic\&AT('12), arXiv:1207.4004]

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.
(0) Although $\mathcal{A}_{T}^{(2, \text { im,re })}\left(q^{2}\right)$ should be unaffected by the presence of $(K \pi)_{S}$ we show that in practice, their normalization might be sensitive to those events and could entail a sizable uncertainty.

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.
(0) Although $\mathcal{A}_{T}^{(2, \text { im,re })}\left(q^{2}\right)$ should be unaffected by the presence of $(K \pi)_{S}$ we show that in practice, their normalization might be sensitive to those events and could entail a sizable uncertainty.

- The corresponding error is under 10% for $q^{2} \lesssim 1 \mathrm{GeV}^{2}$ and for $4 \mathrm{GeV}^{2} \lesssim q^{2}<m_{J / \psi}^{2}$, while it can be as large as 25% around $q^{2} \approx 2 \mathrm{GeV}^{2}$.

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.
(0) Although $\mathcal{A}_{T}^{(2, \mathrm{im}, \text { re })}\left(q^{2}\right)$ should be unaffected by the presence of $(K \pi)_{S}$ we show that in practice, their normalization might be sensitive to those events and could entail a sizable uncertainty.

- The corresponding error is under 10% for $q^{2} \lesssim 1 \mathrm{GeV}^{2}$ and for $4 \mathrm{GeV}^{2} \lesssim q^{2}<m_{J / \psi}^{2}$, while it can be as large as 25% around $q^{2} \approx 2 \mathrm{GeV}^{2}$.
0 Similar situation occurs in $B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$except that the effect of $B_{s} \rightarrow f_{0}\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$is smaller: it remains under 15% around $q^{2} \approx 2.5 \mathrm{GeV}^{2}$, and under 5% elsewhere.

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.
(0) Although $\mathcal{A}_{T}^{(2, \text { im,re })}\left(q^{2}\right)$ should be unaffected by the presence of $(K \pi)_{S}$ we show that in practice, their normalization might be sensitive to those events and could entail a sizable uncertainty.

- The corresponding error is under 10% for $q^{2} \lesssim 1 \mathrm{GeV}^{2}$ and for $4 \mathrm{GeV}^{2} \lesssim q^{2}<m_{J / \psi}^{2}$, while it can be as large as 25% around $q^{2} \approx 2 \mathrm{GeV}^{2}$.
- Similar situation occurs in $B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$except that the effect of $B_{s} \rightarrow f_{0}\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$is smaller: it remains under 15% around $q^{2} \approx 2.5 \mathrm{GeV}^{2}$, and under 5% elsewhere.
- At large $q^{2} \gtrsim 14 \mathrm{GeV}^{2}$, instead, the effect of $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$and $B_{s} \rightarrow f_{0}(980) \ell^{+} \ell^{-}$on $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$respectively, is completely negligible.

Conclusions and perspectives

(1) We studied the impact of the $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$events on the angular distribution of the $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$decay using uniangular distributions.
(0) Although $\mathcal{A}_{T}^{(2, \text { im,re })}\left(q^{2}\right)$ should be unaffected by the presence of $(K \pi)_{S}$ we show that in practice, their normalization might be sensitive to those events and could entail a sizable uncertainty.

- The corresponding error is under 10% for $q^{2} \lesssim 1 \mathrm{GeV}^{2}$ and for $4 \mathrm{GeV}^{2} \lesssim q^{2}<m_{J / \psi}^{2}$, while it can be as large as 25% around $q^{2} \approx 2 \mathrm{GeV}^{2}$.
- Similar situation occurs in $B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$except that the effect of $B_{s} \rightarrow f_{0}\left(\rightarrow K^{+} K^{-}\right) \ell^{+} \ell^{-}$is smaller: it remains under 15% around $q^{2} \approx 2.5 \mathrm{GeV}^{2}$, and under 5% elsewhere.
- At large $q^{2} \gtrsim 14 \mathrm{GeV}^{2}$, instead, the effect of $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$and $B_{s} \rightarrow f_{0}(980) \ell^{+} \ell^{-}$on $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$respectively, is completely negligible.
- This uncertainty, together with the one related to the charm loop, and the controllable uncertainties on the ratios of the $B \rightarrow K^{*}$ form factors, suggests that the overall error on $\mathcal{A}_{T}^{(2, \mathrm{im}, \text { re })}\left(q^{2}\right)$ is under about 30%, and therefore at that level of accuracy the measurement of $\mathcal{A}_{T}^{(2, \text { im,re })}\left(q^{2}\right)$ remains a good tool for detecting the NP signal.

BACKUP SLIDES

$$
B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right)=\mathcal{N}\left[\frac{g_{\kappa}}{m_{K \pi}^{2}-\left(m_{\kappa}-i \Gamma_{\kappa} / 2\right)^{2}}-\frac{1}{m_{K \pi}^{2}-\left(m_{K_{0}^{*}}-i \Gamma_{K_{0}^{*}} / 2\right)^{2}}\right]
$$

where $m_{\kappa}=658(13) \mathrm{MeV}, \Gamma_{\kappa}=557(24) \mathrm{MeV}$, that was identified as a pole in the amplitude of the $K \pi \rightarrow K \pi$ scattering [Descotes-Genon\&Moussallam, hep-ph/0607133]. We vary $g_{\kappa} \in[0,0.2]$. The constant \mathcal{N} is obtained from the normalization to unity,

$$
\int_{-\infty}^{\infty}\left|B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right)\right|^{2} d m_{K \pi}^{2}=1
$$

We checked that in the region of $m_{K \pi} \in\left[m_{K^{*}}-\delta, m_{K^{*}}+\delta\right]$, with $\delta \approx 100 \mathrm{MeV}$, our $B W_{K_{0}^{*}}\left(m_{K \pi}^{2}\right)$ reproduces the shapes of the corresponding $K \pi$ form factors.

$$
\begin{aligned}
\mathcal{I}_{1}^{s}\left(q^{2}\right)= & \frac{2+\beta_{\ell}^{2}}{4}\left[\left|\mathcal{M}_{\perp}^{\ell_{L}}\right|^{2}+\left|\mathcal{M}_{\perp}^{\ell_{R}}\right|^{2}+\left|\mathcal{M}_{\|}^{\ell_{L}}\right|^{2}+\left|\mathcal{M}_{\|}^{\ell_{R}}\right|^{2}\right] \\
& +\frac{4 m_{\ell}^{2}}{q^{2}} \mathcal{R} e\left[\mathcal{M}_{\perp}^{\ell_{L}} \mathcal{M}_{\perp}^{\ell_{R^{*}}}+\mathcal{M}_{\|}^{\ell_{L}} \mathcal{M}_{\|}^{\ell_{R^{*}}}\right] \\
\mathcal{I}_{2}^{s}\left(q^{2}\right)= & \frac{\beta_{\ell}^{2}}{4}\left[\left|\mathcal{M}_{\perp}^{\ell_{L}}\right|^{2}+\left|\mathcal{M}_{\perp}^{\ell_{R}}\right|^{2}+\left|\mathcal{M}_{\|}^{\ell_{L}}\right|^{2}+\left|\mathcal{M}_{\|}^{\ell_{R}}\right|^{2}\right] \\
\mathcal{I}_{3}\left(q^{2}\right)= & \frac{\beta_{\ell}^{2}}{2}\left[\left|\mathcal{M}_{\perp}^{\ell_{L}}\right|^{2}+\left|\mathcal{M}_{\perp}^{\ell_{R}}\right|^{2}-\left|\mathcal{M}_{\|}^{\ell_{L}}\right|^{2}-\left|\mathcal{M}_{\|}^{\ell_{R}}\right|^{2}\right] \\
\mathcal{I}_{6}^{s}\left(q^{2}\right)= & 2 \beta_{\ell} \mathcal{R} e\left[\mathcal{M}_{\|}^{\ell_{L}} \mathcal{M}_{\perp}^{\ell_{L} *}-\mathcal{M}_{\|}^{\ell_{R}} \mathcal{M}_{\perp}^{\ell_{R^{*}}}\right] \\
\mathcal{I}_{9}\left(q^{2}\right)= & \beta_{\ell}^{2} \mathcal{I} m\left[\mathcal{M}_{\perp}^{\ell_{L}} \mathcal{M}_{\|}^{\ell_{L}{ }^{*}}+\mathcal{M}_{\perp}^{\ell_{R}} \mathcal{M}_{\|}^{\ell_{R^{*}}}\right] \\
\mathcal{I}_{1}^{c(1)}\left(q^{2}\right)= & \left|\mathcal{M}_{0}^{\ell_{L}(1)}\right|^{2}+\left|\mathcal{M}_{0}^{\ell_{R}(\prime)}\right|^{2}+\frac{4 m_{\ell}^{2}}{q^{2}}\left(\left|\mathcal{M}_{t}^{(\prime)}\right|^{2}+2 \mathcal{R e}\left[\mathcal{M}_{0}^{\ell_{L}(\prime)} \mathcal{M}_{0}^{\ell_{R}(1) *}\right]\right) \\
\mathcal{I}_{2}^{c(1)}\left(q^{2}\right)= & -\beta_{\ell}^{2}\left[\left|\mathcal{M}_{0}^{\ell_{L}(\prime)}\right|^{2}+\left|\mathcal{M}_{0}^{\ell_{R}(\prime)}\right|^{2}\right]
\end{aligned}
$$

$\left(\mathcal{M}_{i}\right.$ and \mathcal{M}_{i}^{\prime} denote respectively the spin amplitudes of $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $\left.B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}\right)$

$$
\begin{aligned}
\mathcal{M}_{\perp}^{\ell_{L, R}}\left(q^{2}\right)= & N\left(q^{2}\right) \sqrt{2 \lambda\left(q^{2}\right)}\left\{\frac{2 m_{b}}{q^{2}}\left(C_{7 \gamma}+C_{7 \gamma}^{\prime}\right) T_{1}\left(q^{2}\right)\right. \\
& \left.+\left[\left(C_{9}+C_{9}\right) \mp\left(C_{10}+C_{10}^{\prime}\right)\right] \frac{V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}\right\} \\
\mathcal{M}_{\|}^{\ell_{L, R}}\left(q^{2}\right)= & -N\left(q^{2}\right) \sqrt{2}\left(m_{B}^{2}-m_{K^{*}}^{2}\right)\left\{\frac{2 m_{b}}{q^{2}}\left(C_{7 \gamma}-C_{7 \gamma}^{\prime}\right) T_{2}\left(q^{2}\right)\right. \\
& \left.+\left[\left(C_{9}-C_{9}^{\prime}\right) \mp\left(C_{10}-C_{10}^{\prime}\right)\right] \frac{A_{1}\left(q^{2}\right)}{m_{B}-m_{K^{*}}}\right\}
\end{aligned}
$$

- The advantage of using the quantities that include only $\mathcal{M}_{\|, \perp}$ is that they do not require a detailed knowledge of hadronic form factors $T_{3}\left(q^{2}\right)$ and $A_{2,0}\left(q^{2}\right)$ which are quite hard to compute using the lattice QCD simulations.
- Moreover, the ratios $A_{1}\left(q^{2}\right) / T_{2}\left(q^{2}\right)$ and $V\left(q^{2}\right) / T_{1}\left(q^{2}\right)$ are flat in the low q^{2}-region which makes the relevant hadronic uncertainties to be better controlled.

The ratios of the form factors that have similar q^{2}-behavior in the heavy quark limit and in the limit of large energy of K^{*}, are kept as constants, namely

$$
\frac{V\left(q^{2}\right) / T_{1}\left(q^{2}\right)}{m_{B}+m_{K^{*}}} \approx \frac{A_{1}\left(q^{2}\right) / T_{2}\left(q^{2}\right)}{m_{B}-m_{K^{*}}} \approx 0.2 \mathrm{GeV}^{-1}
$$

which in practice we vary between $(0.17 \div 0.23) \mathrm{GeV}^{-1}$. For the ratio of the tensor form factors we use the approximation

$$
\frac{T_{2}\left(q^{2}\right)}{T_{1}\left(q^{2}\right)} \approx 1+z q^{2}
$$

with $z=-0.030(3)$.
[Ball\&Zwicky, Phys.Rev.D71('05), Becirevic et al., Nucl.Phys.B769('07), Colangelo et al.('96), arXiv:9510403]

