Theoretical interests on measuring $C_{7}{ }^{\prime}$

Emi KOU (LAL/IN2P3-Orsay)
in collaboration with D.Becirevic,A.Tayduganov\&A.LeYaouanc

Workshop on the physics reach of rare and excludive B decays Sussex University
10th-11th September 2012

The $b \rightarrow$ sll at low q^{2}

At the limit of $q^{2}=0$, the $b \rightarrow$ sll process approaches to $b \rightarrow s \gamma \rightarrow s l l$.

$\bar{b} A_{\mu} s=-i V_{t b} V_{t s}^{*} \frac{G_{F}}{\sqrt{2}} \frac{\mathrm{e}}{8 \pi^{2}}$	

Thus, the interest at low q^{2} is the $c_{7} \& c_{7}^{\prime}$ measurement.
A clean observable proposed:
Kruger, Matias PRD7I
Becirevic, Schneider, NPB854
$\lim _{q^{2} \rightarrow 0} \mathcal{A}_{T}^{(2)}\left(q^{2}\right)=\frac{2 \mathcal{R} e\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{7 \gamma}^{\prime}\right|^{2}}$

$$
\lim _{q^{2} \rightarrow 0} \mathcal{A}_{T}^{(\mathrm{im})}\left(q^{2}\right)=\frac{2 \mathcal{I} m\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{7 \gamma}^{\prime}\right|^{2}}
$$

Observables at low $q^{2}\left(A_{T}{ }^{(2)}\right.$ and $\left.A_{T}{ }^{(i m)}\right)$

$A_{T}{ }^{(2)}$ and $A_{T}{ }^{(i m)}$ are written in terms of transverse amplitudes:

$$
\begin{aligned}
& \mathcal{A}_{T}^{(2)}\left(q^{2}\right)=\frac{I_{3}\left(q^{2}\right)}{2 I_{2}^{s}\left(q^{2}\right)} \quad \mathcal{A}_{T}^{(\mathrm{im})}\left(q^{2}\right)=\frac{I_{9}\left(q^{2}\right)}{2 I_{2}^{s}\left(q^{2}\right)} \\
& I_{2}^{s}\left(q^{2}\right)=\frac{\beta_{\ell}^{2}}{4}\left[\left|A_{\perp}^{\ell_{L}}\right|^{2}+\left|A_{\perp}^{\ell_{R}}\right|^{2}+\left|A_{\|}^{\ell_{L}}\right|^{2}+\left|A_{\|}^{\ell_{R}}\right|^{2}\right], \\
& I_{3}\left(q^{2}\right)=\frac{\beta_{\ell}^{2}}{2}\left[\left|A_{\perp}^{\ell_{L}}\right|^{2}+\left|A_{\perp}^{\ell_{R}}\right|^{2}-\left|A_{\|}^{\ell_{L}}\right|^{2}-\left|A_{\|}^{\ell_{R}}\right|^{2}\right], \\
& I_{6}^{s}\left(q^{2}\right)=2 \beta_{\ell} \mathcal{R} e\left[A_{\|}^{\ell_{L}} A_{\perp}^{\ell_{L^{*}}}-A_{\|}^{\ell_{R}} A_{\perp}^{\ell_{R^{*}}}\right], \\
& I_{9}\left(q^{2}\right)=\beta_{\ell}^{2} \mathcal{I} m\left[A_{\perp}^{\ell_{L}} A_{\|}^{\ell_{L^{*}}}+A_{\perp}^{\ell_{R}} A_{\|}^{\ell_{R^{*}}}\right] .
\end{aligned}
$$

Kruger, Matias PRD7I Becirevic, Schneider, NPB854

Egede et al.JHEPO8। I

* We will come back to the issue of $\Delta q^{2} \neq 0$ effect later

New physics sensitive to $A_{T}^{(2)}$ and $A_{T}{ }^{(i m)}$

New physics contributions to $c_{7} \& c_{7}^{\prime}$ here are the same one we can extract from the $b \rightarrow s \gamma$ induced processes.

The O_{7} has a particular structure in SM

New physics sensitive to $A_{T}^{(2)}$ and $A_{T}{ }^{(i m)}$

New physics contributions to $c_{7} \& c_{7}^{\prime}$ here are the same one we can extract from the $b \rightarrow s \gamma$ induced processes.

The O_{7} has a particular structure in SM

$$
\bar{b} A_{\mu s}=-i V_{t b} V_{t s}^{*} \frac{G_{F}}{\sqrt{2}} \frac{\mathrm{e}}{8 \pi^{2}}[\underbrace{E_{0}\left(x_{t}\right) \bar{s}_{L}\left(q^{2} \gamma_{\mu}-q_{\mu} \not d\right) b_{L}}_{\substack{O_{9 \sim 10}: \text { penguin operator } \\
\text { photon off-shell }}}-(\underbrace{\text { photon on-shell }}_{\left.\begin{array}{c}
O_{7,8 g}: \text { magnetic operator } \\
m_{b} E_{0}^{\prime}\left(x_{t}\right) \bar{s}_{L} \sigma_{\mu \nu} q^{\nu} b_{R}
\end{array}\right]}]
$$

However, this left-handedness of the polarization of $b \rightarrow s \gamma$ has never been confirmed at a high precision yet!!
\& $\quad b \rightarrow s \gamma_{L}$ (left-handed polarization)
Les $b \rightarrow s Y_{R}$ (right-handed polarization)

$$
\begin{gathered}
m_{s} \bar{s}_{R} \sigma_{\mu \nu} q^{\nu} b_{L} \\
\text { Opposite } \\
\text { chirality is } \\
\text { suppressed by } \\
\text { a factor } m_{s} / m_{\mathrm{b}}
\end{gathered}
$$

New physics sensitive to $A_{T}^{(2)}$ and $A_{T}{ }^{(i m)}$

New physics contributions to $c_{7} \& c_{7}^{\prime}$ here are the same one we can extract from the $b \rightarrow s \gamma$ induced processes.

The O_{7} has a particular structure in SM

$$
\begin{aligned}
& \bar{b} A_{\mu} s=-i V_{t b} V_{t s}^{*} \frac{G_{F}}{\sqrt{2}} \frac{\mathrm{e}}{8 \pi^{2}}[\underbrace{E_{0}\left(x_{t}\right) \bar{s}_{L}\left(q^{2} \gamma_{\mu}-q_{\mu} \phi\right) b_{L}}_{O_{9}(10: \text { penguin operator }}-\underbrace{m_{b} E_{0}^{\prime}\left(x_{t}\right) \bar{s}_{L} \sigma_{\mu \nu} q^{\nu} b_{R}}_{O_{\gamma \gamma, 8 g}: \text { magnetic operator }}] \\
& \text { photon off-shell } \\
& \text { photon on-shell }
\end{aligned}
$$

However, this left-handedness of the

$A_{T}{ }^{(2)}$ and $A_{T}{ }^{(i m)}$ are indeed sensitive to the right-handed contribution.

$$
\lim _{q^{2} \rightarrow 0} \mathcal{A}_{T}^{(2)}\left(q^{2}\right)=\frac{2 \mathcal{R} e\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{\gamma \gamma}^{\prime}\right|^{2}}
$$

$$
\lim _{q^{2} \rightarrow 0} \mathcal{A}_{T}^{(\mathrm{im})}\left(q^{2}\right)=\frac{2 \mathcal{I} m\left[C_{7 \gamma} C_{7 \gamma}^{\prime *}\right]}{\left|C_{7 \gamma}\right|^{2}+\left|C_{7 \gamma}^{\prime}\right|^{2}}
$$

Right-handed: which NP model?

What types of new physics models? For example, models with right-handed neutrino, or custodial symmetry in general
 induces the right handed current.

```
Left-Right symmetric model ( \(W_{R}\) )
```

Blanke et al. JHEP1203

Girrbach et al. JHEP1106

Which flavour structure?

The models that contain new particles which change the chirality inside of the $b \rightarrow$ sy loop can induce a large chiral enhancement!

Left-Right symmetric model: $\mathrm{mt} / \mathrm{mb}$
Cho, Misiak, PRD49, '94 Babu et al PLB333 ‘94

SUSY with $\delta_{R L}$ mass insertions: msusy/mb
Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 ‘04

Theoretical interests in searching right-handed current using $b \rightarrow s \gamma$

Left-Right symmetry is often required for building new physics models in order to satisfy the electroweak data of rho $\simeq 1$.

SUSY-GUT models often induces right-
 handed current in relation to the right-
handed neutrino. etc...
In addition, when there is a new particle in the loop which changes the chirality inside of the loop, there is chiral enhancement!

examples

Left-Right symmetric model: $\mathrm{mt} / \mathrm{mb}$
Babu, Fujikawa, Yamada PLB333 ‘94

SUSY with $\delta_{\text {RL }}$ mass insertions: msusy/mb

Gabbiani, Gabrielli, Masiero,
Silvestrini NPB477 '96
We can allow a large new physics enhancement in $b \rightarrow s \gamma / b \rightarrow s g$ (on-shell s / g), despite of the strong constraints on e.g. Bs box diagram, namely ΔM_{s} and Φ_{s}.

Ball, EK, Khalil, PRD69 ‘04

Example of chiral enhancement: $=$ =SUSY with $\delta_{\text {RL }}$ mass insertions=

Constraints from Bs mixing parameters (DMs and phis):

Constraints from $B \rightarrow X_{s} \gamma$ branching ratios:

Current constraints on $C_{7} \& C_{7}{ }^{\prime}$

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{S \mathrm{M}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\alpha \mathcal{M}_{L}}+\underbrace{C_{7 \gamma}^{\mathrm{NP}}\left\langle\mathcal{O}_{7 \gamma}^{\prime}\right\rangle}_{\alpha \mathcal{M}_{R}}]
$$

Constraints from inclusive branching ratio

$$
\operatorname{Br}\left(B \rightarrow X_{S} \gamma\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}
$$

$$
\text { HFAG }(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}
$$

Constraints from Time dependent CPV of $\mathrm{S}_{\text {Ksror }}$

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

HFAG $S_{\text {Kstoy }}=-0.15 \pm 0.2$

Current constraints on $C_{7} \& C_{7}{ }^{\prime}$

We can write the amplitude including RH contribution as:

$$
\mathcal{M}(b \rightarrow s \gamma) \simeq-\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b}[\underbrace{\left(C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right)\left\langle\mathcal{O}_{7 \gamma}\right\rangle}_{\propto \mathcal{M}_{L}}+
$$

Constraints from inclusive branching ratio

$$
B r\left(B \rightarrow X_{S} \gamma\right) \propto\left|C_{7 \gamma}^{\mathrm{SM}}+C_{7 \gamma}^{\mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{N}}\right\rangle
$$

HFAG (3.43 ± 0.2)
Constraints from Time dependent CPV of $\mathrm{S}_{\text {Kstor }}$

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

$$
\text { HFAG } S_{\text {Kstor }}=-0.16 \pm 0.22
$$

Current constraints on $C_{7} \& C_{7}{ }^{\prime}$

New physics only $\mathrm{RHC}_{7}{ }^{\prime}$

New physics LH=RH

New physics LH=-RH

Constraint expectation from $A_{T}{ }^{(2)}$ and $A_{T}{ }^{(i m)}$

Becirevic, EK, Le Yaouanc, Tayduganov arXive:I 206. I 502
Scenario (b): New physics with only RH $\left(C_{7}{ }^{\mathrm{NP}}=0\right)$

Expected constraint from

$\mathrm{A}_{T^{(2)}}, \mathrm{A}^{(\text {(im) }}$ measurement with 10% precision

$C_{9} \& C_{10}$ assumed to be SM. The q^{2} dependence (dashed) small

Constraint expectation from $A_{T}^{(2)}$ and $A_{T}^{(i m)}$

Becirevic, EK, Le Yaouanc, Tayduganov arXive:I 206. I 502
Scenario (c): New physics with LR=RH $\left(C_{7}{ }^{\mathrm{NP}}=C_{7}{ }^{\text {NP }}\right.$)
Expected constraint from
$\mathrm{A}_{T}{ }^{(2)}, \mathrm{A}^{\left({ }^{(i m)}\right)}$ measurement with 10% precision

$C_{9} \& C_{10}$ assumed to be SM. The q^{2} dependence (dashed) large

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov arXive:I 206. I 502
proposed methods
\rightarrow Method I:Time dependent CP asymmetry in $B_{d} \rightarrow K_{s} \pi^{0} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{K s t r o \gamma}, \mathrm{~S}_{\mathrm{K}+\mathrm{K}-\gamma}$)

$$
S_{K_{S} \pi^{0} \gamma}=\frac{2\left|C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP}}\right|}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}} \sin \left(2 \phi_{1}-\phi_{R}\right) \quad \phi_{R}=\arg \left[\frac{C_{7 \gamma}^{\prime \mathrm{NP}}}{C_{7 \gamma}^{\mathrm{SM}}}\right]
$$

\rightarrow Method II:Transverse asymmetry in $\left.\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+}\right|^{-}$(called $\left.\mathrm{A}_{T^{(2)}}, \mathrm{A}_{T^{(i m)}}{ }^{(\mathrm{im}}\right)$

$$
\mathcal{A}_{T}^{(2)}\left(q^{2}=0\right)=\frac{2 \operatorname{Re}\left[C_{7 \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{\gamma \gamma}^{\prime \mathrm{NP}}\right|^{2}} \quad \mathcal{A}_{T}^{(i m)}\left(q^{2}=0\right)=\frac{2 \operatorname{Im}\left[C_{\gamma \gamma}^{\mathrm{SM}} C_{7 \gamma}^{\prime \mathrm{NP} *}\right]}{\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}+\left|C_{\gamma \gamma}^{\prime \mathrm{NP}}\right|^{2}}
$$

\rightarrow Method III: $\mathrm{B} \rightarrow \mathrm{K}_{\mathrm{I}}(\rightarrow$ KTTT) $)$ (called $\boldsymbol{\lambda}_{Y}$) EK, Le Yaouanc, A.Tayduganov, PRD83 ('II)

$$
\lambda=\frac{\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}-\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}{\left|C_{7 \gamma}^{\prime \mathrm{NP}}\right|^{2}+\left|C_{7 \gamma}^{\mathrm{SM}}\right|^{2}}
$$

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov arXive:I 206. I 502
proposed methods

- Method I: Time dependent CP asymmetry in $B_{d} \rightarrow K_{a t r g} \gamma B_{s} \rightarrow K^{+} K^{-} \gamma$ (called $\mathrm{S}_{\mathrm{Ks} \pi \mathrm{H}_{\gamma}}, \mathrm{S}_{\mathrm{K}+\mathrm{K}-\gamma}$)
\rightarrow Method II: Transverse asymmetry in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+}+$-(called $\mathrm{A}_{T^{(2)}}, \mathrm{A}_{\mathrm{T}}{ }^{(\mathrm{im})}$)
\rightarrow Method III: $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma\left(\right.$ called $\left.\lambda_{Y}\right)$
Super Flavour Factory/LHCb $\sigma_{\lambda}(0.1-0.2)$

Figure 5: Prospect of the future constraints on $C_{7 \gamma}^{(1)}$ in the NP scenario II: $C_{7 \gamma}^{(\mathrm{NP})}$ is purely SM-like, i.e. $C_{7 \gamma}^{(\mathrm{NP})}=0$. The contour colours in Fig. (a, b, c, d) correspond respectively to $S_{K_{S} \pi^{0} \gamma}, \lambda_{\gamma}, \mathcal{A}_{T}^{(2)}(0)$ and $\mathcal{A}_{T}^{(\mathrm{im})}(0)$ allowed by a $\pm 3 \sigma$ error to the central value of $\mathcal{B}^{\exp }\left(B \rightarrow X_{s} \gamma\right)$.

Figure 6: Prospect of the future constraints on $C_{7 \gamma}^{(1)}$ in the NP scenario III: $C_{7 \gamma}^{(\mathrm{NP})}=C_{7 \gamma}^{\prime(\mathrm{NP})}$. The contour colours in Fig. (a, b, c, d) correspond respectively to $S_{K_{S} \pi^{0} \gamma}, \lambda_{\gamma}, \mathcal{A}_{T}^{(2)}(0)$ and $\mathcal{A}_{T}^{(\mathrm{im})}(0)$ allowed by a $\pm 3 \sigma$ error to the central value of $\mathcal{B}^{\exp }\left(B \rightarrow X_{s} \gamma\right)$.

Summary

- We discussed the transverse asymmetries of $\left.B_{d} \rightarrow K^{*}\right|^{+} I^{-}$at low q^{2}, namely $A_{T}{ }^{(2)}, A_{T}{ }^{(i m)}$.

The new physics contributions sensitive to $A_{T}{ }^{(2)}, A_{T}{ }^{(i m)}$ at $q^{2}=0$ are those sensitive to other $b \rightarrow$ sY observables $\left(C_{7} \& C_{7}{ }^{\prime}\right)$.

- I showed a comparison of the three methods to extract $C_{7} \& C_{7}{ }^{\prime}$.
- Advantage of $A_{T}{ }^{(2)}, A_{T}{ }^{(i m)}$ is that they are related to the first order in terms of the $\left|C_{7}{ }^{\prime} / C_{7}\right|$.

Disadvantage of $A_{T}{ }^{(2)}, A_{T}{ }^{(i m)}$, we need assumption for $C_{9} \& C_{10}$ for $q^{2} \neq 0$ to constrain $\left|C_{7}^{\prime} / C_{7}\right|$.

- The best would be to use different methods and measure $C_{7} \& C_{7}^{\prime}$ independently.

Backup

Polarization measurement using

 $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254
Why do we need three body channel to start with???

Polarization measurement using

 $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254
Why do we need three body channel to start with???

3 body decay

Polarization measurement using

$B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Up-Down asymmetry

Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254

$$
\begin{aligned}
\mathcal{A}= & \frac{\int_{0}^{\pi / 2} d|\mathcal{M}|^{2} d \theta-\int_{\pi / 2}^{\pi} d|\mathcal{M}|^{2} d \theta}{\int_{0}^{\pi} d|\mathcal{M}|^{2} d \theta} \\
= & \underbrace{\frac{\left\langle\operatorname{Im}\left(\hat{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right)\right\rangle}{\left.\left.\langle | \vec{J}\right|^{2}\right\rangle}}_{\vec{J}: \begin{array}{l}
\text { Helicity amplitude } \\
\text { of } K_{1} \rightarrow K \pi \pi
\end{array}} \cdot \underbrace{\frac{\left|C_{7 \gamma}^{\prime}\right|^{2}-\left|C_{7 \gamma}\right|^{2}}{\left|C_{7 \gamma}^{\prime}\right|^{2}+\left|C_{7 \gamma}\right|^{2}}}_{\begin{array}{c}
\lambda \text { : Polarization } \\
\text { parameter }
\end{array}} \\
&
\end{aligned}
$$

Circularly-polarization measurement of γ

Polarization measurement using

$B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0 I 07254

Up-Down asymmetry

$$
\begin{aligned}
\mathcal{A} & ={\frac{\int_{0}^{\pi / 2} d|\mathcal{M}|^{2} d \theta-\int_{\pi / 2}^{\pi} d|\mathcal{M}|^{2} d \theta}{\int_{0}^{\pi} d|\mathcal{M}|^{2} d \theta}}=\underbrace{\frac{\left\langle\operatorname{Im}\left(\hat{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right)\right\rangle}{\left.\left.\langle | \vec{J}\right|^{2}\right\rangle}}_{\overrightarrow{\vec{J}: \text { Helicity amplitude }} \begin{array}{l}
\text { of } \mathrm{K}_{1} \rightarrow \text { K } \pi \pi
\end{array}} \underbrace{\frac{\left|C_{7 \gamma}^{\prime}\right|^{2}-\left|C_{7 \gamma}\right|^{2}}{\left|C_{7 \gamma}^{\prime}\right|^{2}+\left|C_{7 \gamma}\right|^{2}}}_{\begin{array}{c}
\lambda \text { : Polarization } \\
\text { parameter }
\end{array}}
\end{aligned}
$$

Angular distribution of K_{1} decay

Circularly-polarization measurement of γ

Source of imaginary part
\Rightarrow Breit-Wigner of two resonances

Belle Observation of $B \rightarrow K_{1}(1270) \gamma$!

Branching ratio measurements: $\left(\times 10^{-5}\right)$

Belle reported an observation of $B \rightarrow K_{1(1270) Y}(7.3 \sigma)$.
So far, $B \rightarrow K_{1(1400)} \gamma$ has not yet been observed.

DDLR method: improved polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$

EK, Le Yaouanc, A.Tayduganov, PRD83 ('II)

$$
\frac{d \Gamma}{d s_{13} d s_{23} d \cos \theta} \propto \frac{1}{4}|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)+\lambda \frac{1}{2} \operatorname{Im}\left[\vec{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right] \cos \theta
$$

\section*{DDLR method Applied to the T polarization measurement at ALEPH
 Davier, Duflot, Le Diberder,

Rouge, PLB306 '93}
\checkmark The polarization information is not only in the angular distribution but also in the Dalitz distribution.
\checkmark When the PDF depends only linearly to the polarization parameter, one can simplify the analysis using the ω variable.

$$
\omega\left(s_{13}, s_{23}, \cos \theta\right) \equiv \frac{2 \operatorname{Im}\left[\vec{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right] \cos \theta}{|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)}
$$

DDLR method: improved polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$

EK, Le Yaouanc, A.Tayduganov, PRD83 ('II)

$$
\omega\left(s_{13}, s_{23}, \cos \theta\right) \equiv \frac{2 \operatorname{Im}\left[\vec{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right] \cos \theta}{|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)}
$$

How to use the ω variable?
For each event $\xi_{i}\left(\mathrm{~s}_{13}, \mathrm{~s}_{23}, \cos _{8}\right)$:

1. Compute the ω value knowing the function $J\left(s_{13}, s_{23}, \cos _{\theta}\right)$.
2. Make a ω distribution.
3. Polarization is then obtained!

$$
\lambda=\frac{\langle\omega\rangle}{\left\langle\omega^{2}\right\rangle}
$$

DDLR method: improved polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$

EK, Le Yaouanc, A.Tayduganov, PRD83 ('II)

$$
\omega\left(s_{13}, s_{23}, \cos \theta\right) \equiv \frac{2 \operatorname{Im}\left[\vec{n} \cdot\left(\vec{J} \times \overrightarrow{J^{*}}\right)\right] \cos \theta}{|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)}
$$

Stat. errors to $\lambda_{\gamma}^{(S M)}$ from $B \rightarrow K_{1}(1270) \gamma$

$N_{\text {events }}$	10^{3}	10^{4}
(I) $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \gamma$	± 0.18	± 0.06
(II) $B^{+} \rightarrow K^{0} \pi^{+} \pi^{0} \gamma$	± 0.12	± 0.04
(III) $B^{0} \rightarrow K^{0} \pi^{+} \pi^{-} \gamma$	± 0.18	± 0.06
(IV) $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \gamma$	± 0.12	± 0.04

~10\% accuracy achievable!

Our study shows that DDLR method reduces the statistical errors in λ by a factor of two comparing to the up-down asymmetry.

DDLR method: improved polarization measurement using $B \rightarrow K_{1}(\rightarrow K \pi \pi) \gamma$

$\omega\left(S_{12}, S_{22} \cdot \cos \theta\right) \equiv \underline{2 \operatorname{Im}\left[\vec{n} \cdot\left(\vec{J} \times \vec{J}^{*}\right)\right] \cos \theta}$

> We need detailed information on the hadronic amplitude of $K_{1} \rightarrow K \pi \pi$

Angular \& Dalitz distribution of K_{1} decay

Circularly-polarization measurement of γ

$N_{\text {events }}$

Our study shows that DDLR method reduces the statistical errors in λ by a factor of two comparing to the up-down asymmetry.

Strong decay of $K_{1} \rightarrow K \pi \pi$

A.Tayduganov, EK, Le Yaouanc, to be published in PRD

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

$$
\mathrm{B} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{1}, \mathrm{~T} \rightarrow \mathrm{~K}_{1} \mathrm{~V} \ldots
$$

2. Model dependent extraction i.e. theoretical estimate Modeling J function:
```
Assume K K }->\mathrm{ Kпm comes from quasi-two-body
decay, e.g. Kl}->\mp@subsup{K}{}{*}\pi,\mp@subsup{K}{1}{}->\rhoK, then, J function can be
written in terms of:
    * form factors (S,D partial wave amplitudes)
    > couplings (g\mp@subsup{k}{}{*}k\pi,
    1 relative phase between two channel
```


Strong decay of $K_{1} \rightarrow K \pi \pi$

A.Tayduganov, EK, Le Yaouanc, to be published in PRD

Model parameters are extracted by fitting to data:

$$
\begin{aligned}
& \checkmark \quad \mathrm{Br}_{(\mathrm{K}}^{1(1270)} \boldsymbol{\rightarrow \mathrm { K } ^ { * } \pi) / \mathrm { Br } (\mathrm { K } _ { 1 (1 2 7 0) } \rightarrow \mathrm { OK }) = 0 . 2 4 \pm 0 . 0 9}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\checkmark \mathrm{Br}\left(\mathrm{~K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)_{0} \text {.wve } / \mathrm{Br} \mathrm{~K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {swove }}=0.04 \pm 0.01 \\
& \left.\checkmark \mathrm{Br}\left(\mathrm{~K}_{1(1270)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {.wvev }} / \mathrm{Br} \mathrm{~K}_{1(1270)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {swove }}=2.67 \pm 0.95
\end{aligned}
$$

Brandenburg et al,
Phys Rev Lett, 36 ('76)
Otter et al,
Nucl Phys, B106 ('77)
Daum et al,
Nucl Phys, B187 ('81)

Recent Belle measurement of $B \rightarrow J / \Psi K_{1}$ fixed the relative phase!!

Strong decay of $K_{1} \rightarrow K \pi \pi$

A.Tayduganov, EK, Le Yaouanc, to be published in PRD

Model parameters are extracted by fitting to data:

$$
\begin{aligned}
& \checkmark \quad \mathrm{Br}_{(\mathrm{K}}^{1(1270)} \boldsymbol{\rightarrow \mathrm { K } ^ { * } \pi) / \mathrm { Br } (\mathrm { K } _ { 1 (1 2 7 0) } \rightarrow \mathrm { OK }) = 0 . 2 4 \pm 0 . 0 9}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\checkmark \mathrm{Br}\left(\mathrm{~K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)_{0} \text {.wve } / \mathrm{Br} \mathrm{~K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {swove }}=0.04 \pm 0.01 \\
& \left.\checkmark \mathrm{Br}\left(\mathrm{~K}_{1(1270)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {.wvev }} / \mathrm{Br} \mathrm{~K}_{1(1270)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {swove }}=2.67 \pm 0.95
\end{aligned}
$$

Brandenburg et al,
Phys Rev Lett, 36 ('76)
Otter et al,
Nucl Phys, B106 ('77)
Daum et al,
Nucl Phys, B187 ('81)

Recent Belle measurement of $B \rightarrow J / \Psi K_{1}$ fixed the relative phase!!

Strong decay of $K_{1} \rightarrow K \pi \pi$

A.Tayduganov, EK, Le Yaouanc, to be published in PRD

Model parameters are extracted by fitting to data:

$$
\begin{aligned}
& \checkmark \quad \mathrm{Br}\left(\mathrm{~K}_{1(1270)} \rightarrow \mathrm{K}^{*} \pi\right) / \mathrm{Br}\left(\mathrm{~K}_{1(1270)} \rightarrow \mathrm{OK}\right)=0.24 \pm 0.09 \\
& \checkmark \quad \mathrm{Br}\left(\mathrm{~K}_{1(100)} \rightarrow \mathrm{QK}\right) / \mathrm{Br}_{r}\left(\mathrm{~K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)=0.01 \pm 0.01 \\
& \left.\checkmark \mathrm{Br}\left(\mathrm{~K}_{1(1000)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {owver }} / \mathrm{Br} / \mathrm{K}_{1(1400)} \rightarrow \mathrm{K}^{*} \pi\right)_{\text {swove }}=0.04 \pm 0.01 \\
& \checkmark \mathrm{Br}\left(\mathrm{~K}_{1(120)} \rightarrow \mathrm{K}^{*} \pi\right)_{0 \text {.wvo }} / \mathrm{Br}\left(\mathrm{~K}_{1(127)} \rightarrow K^{*} \pi\right)_{\text {swve }}=2.67 \pm 0.95
\end{aligned}
$$

Brandenburg et al,
Phys Rev Lett, 36 ('76)
Otter et al,
Nucl Phys, B106 ('77)
Daum et al,
Nucl Phys, B187 (‘81)

Recent Belle measurement of $B \rightarrow J / \Psi K_{1}$ fixed the relative phase!!

