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The b→sll at low q2

At the limit of q2=0, the b➔sll process approaches to b➔sγ➔sll. 

b s
W−

γ
R L

L

Thus, the interest at low q2 is the c7&c7’ measurement.
A clean observable proposed: 

the measurement of I3,9(q2) and Is2,6(q
2) allows us to determine A(2, im, re)

T directly from the

fit.

Note that A(2, im, re)
T (q2) involve only A‖,⊥(q2) and not the longitudinal and time-like

amplitudes A0,t(q2) (see Eq. (48)). As emphasized by one of the authors [27], the advan-

tage of using the quantities that include only A‖,⊥ is that they do not require a detailed

knowledge of hadronic form factors T3(q2) and A2,0(q2) which are quite hard to compute

using the lattice QCD simulations. Moreover, as it was verified in Ref. [27], the ratios

A1(q2)/T2(q2) and V (q2)/T1(q2) are flat in the low q2-region which makes the relevant

hadronic uncertainties to be better controlled.

One can easily demonstrate that

lim
q2→0

A(2)
T (q2) =

2Re[C7γC ′ ∗
7γ ]

|C7γ|2 + |C ′
7γ|2

, (24a)

lim
q2→0

A(im)
T (q2) =

2Im[C7γC ′ ∗
7γ ]

|C7γ|2 + |C ′
7γ|2

, (24b)

lim
q2→0

A(re)
T (q2) =0 . (24c)

This is the consequence of the fact that in the very low !+!− invariant mass region

the O7γ operator is dominant with respect to the semileptonic O9,10 operators. Note

that approximation of Eq. (24) is strictly valid only at q2 = 0, and away from this

point the expressions for A(2, im, re)
T (q2) become more complicated due to the non-negligible

contributions from the other terms proportional to C (′)
9,10 (see Eq. (48)). In practice, we

work with binned experimental distributions within a range of q2 and the full expression,

involving C (′)
9,10, should be used. Note however that at low q2 the impact of C9,10 is very

small.

Unlike A(2, im)
T (0) whose values can change considerably if NP affects the coefficients

C (′)
7γ , the third asymmetry A(re)

T (0) remains insensitive to NP. The q2-shapes of three

asymmetries can give important hints of the presence of NP in some scenarios [27].

The new analysis of the B → K∗e+e− decay mode by the LHCb collaboration [29]

shows that one can expect an annual yield of 200 to 250 events for 2 fb−1 in the region

30 MeV <
√

q2 < 1 GeV which would amount to an error on A(2)
T about

σLHCb(A(2)
T ) ∼ 20% . (25)

3.4 Comparison of the methods: advantages and disadvantages

First, it should be noticed that the measurements of the time-dependent CP -asymmetry

in B → K∗(→ KSπ0)γ and of the two transverse asymmetries A(2, im)
T (q2) in B → K∗!+!−

are proportional to the absolute value of the ratio

r =
C ′

7γ

C7γ
, (26)
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Magnetic penguins: LR mass insertion

! Penguins have two Dirac structure:

b̄Aµs = −iVtbV
∗
ts

GF√
2

g(s)
8π2






E0(xt)s̄L(q2γµ − qµ/q )bL
︸ ︷︷ ︸

O1∼10: penguin operator

− mbE
′
0(xt)s̄LσµνqνbR

︸ ︷︷ ︸

O7γ,8g: magnetic operator







! Magnetic-Operator (evidence of V − A theory)

" Chirality-flip L → R on the b quark induces the factor mb

" Induce a relatively large b → sγ

Caveat: photon polarisation necessary for confirmation

! If the new physics induces chirality-flip then it is no more pro-
portional to the external mass but to the internal mass...

" The SUSY breaking term induces the chirality-flip propa-

gator b̃R − s̃L (chirality-flip occurs on the internal-line).

" As a result, this term is enhanced by the gluino mass!:

mg̃s̄LσµνqνbR × δ23
LR × loop

photon on-shell
and bR!sL "L, 

photon off-shell
= not polarized

(e.g. semi-leptonic)
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Observables at low q2 (AT(2) and AT(im)) 

AT(2) and AT(im) are written in terms of transverse amplitudes: 
the measurement of I3,9(q2) and Is2,6(q

2) allows us to determine A(2, im, re)
T directly from the

fit.
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3.3 The angular analysis of B → K∗(→ Kπ)"+"−

In Refs. [13, 14], it was proposed to test the NP effects by studying the angular distribu-

tions of the four-body final state in the B0 → K∗0(→ K−π+)"+"− decay.

Written in terms of four kinematic variables, the differential decay rate can be written

as

d4Γ(B
0 → K

∗0
"+"−)

dq2 d cos θ! d cos θK dφ
=

9

32π

{
Is1(q

2) sin2 θK + Ic1(q
2) cos2 θK

+ [Is2(q
2) sin2 θK + Ic2(q

2) cos2 θK ] cos 2θ! + I3(q
2) sin2 θK sin2 θ! cos 2φ

+ I4(q
2) sin 2θK sin 2θ! cosφ+ I5(q

2) sin 2θK sin θ! cosφ

+ [Is6(q
2) sin2 θK + Ic6(q

2) cos2 θK ] cos θ! + I7(q
2) sin 2θK sin θ! sinφ

+ I8(q
2) sin 2θK sin 2θ! sinφ+ I9(q

2) sin2 θK sin2 θ! sin 2φ

}
,

(21)

where we use the notation adopted in Ref. [26]. Ii(q2) can be expressed in terms of two

transverse, A⊥,‖(q2), one longitudinal, A0(q2), amplitudes related to the spin state of the

on-shell K∗, and one additional time-like amplitude, At(q2), related to the off-shell virtual

gauge boson decaying into the lepton pair. All four amplitudes A⊥,‖,0,t(q2) can be found

in the Appendix of the present paper. In terms of these amplitudes [26],

Is2(q
2) =

β2
!

4

[
|A!L

⊥ |2 + |A!R
⊥ |2 + |A!L

‖ |2 + |A!R
‖ |2

]
, (22a)

I3(q
2) =

β2
!

2

[
|A!L

⊥ |2 + |A!R
⊥ |2 − |A!L

‖ |2 − |A!R
‖ |2

]
, (22b)

Is6(q
2) =2β!Re

[
A!L

‖ A!L∗
⊥ − A!R

‖ A!R∗
⊥

]
, (22c)

I9(q
2) =β2

!Im
[
A!L

⊥ A!L∗
‖ + A!R

⊥ A!R∗
‖

]
. (22d)

One of the most promising observables, that have a small impact from the theoretical

uncertainties are the transverse asymmetries defined as [14, 27]5

A(2)
T (q2) =

I3(q2)

2Is2(q
2)

, (23a)

A(im)
T (q2) =

I9(q2)

2Is2(q
2)

, (23b)

A(re)
T (q2) =

β!

4

Is6(q
2)

Is2(q
2)

. (23c)

These asymmetries, as well as the other quantities introduced in the literature, can be

extracted from the experimental angular decay distribution fitting Ii(q2). In particular,

5One has to pay attention that A(im)
T (q2), we are using here, is different from Aim(q2), defined in

Ref. [28]: Aim(q2) =
Im[AL

⊥(q2)AL∗
‖ (q2)+AR

⊥(q2)AR∗
‖ (q2)]

|A⊥(q2)|2+|A‖(q2)|2+|A0(q2)|2 .
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* We will come back to the issue of ∆q2≠0 effect later 



New physics sensitive to AT(2) and AT(im)

The O7 has a particular structure in SM
Magnetic penguins: LR mass insertion

! Penguins have two Dirac structure:

b̄Aµs = −iVtbV
∗
ts

GF√
2

g(s)
8π2






E0(xt)s̄L(q2γµ − qµ/q )bL
︸ ︷︷ ︸

O1∼10: penguin operator

− mbE
′
0(xt)s̄LσµνqνbR

︸ ︷︷ ︸

O7γ,8g: magnetic operator







! Magnetic-Operator (evidence of V − A theory)

" Chirality-flip L → R on the b quark induces the factor mb

" Induce a relatively large b → sγ

Caveat: photon polarisation necessary for confirmation

! If the new physics induces chirality-flip then it is no more pro-
portional to the external mass but to the internal mass...

" The SUSY breaking term induces the chirality-flip propa-

gator b̃R − s̃L (chirality-flip occurs on the internal-line).

" As a result, this term is enhanced by the gluino mass!:

mg̃s̄LσµνqνbR × δ23
LR × loop

photon on-shell
and bR!sL "L, 

photon off-shell
= not polarized

(e.g. semi-leptonic)
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mssRσµνqνbL

! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)

W-boson couples 
only left-handed

γ of b ➞s γ should be 
circularly-polarized

Opposite 
chirality is 

suppressed by 
a factor ms/mb

-

b s
W−

γ
R L

L

New physics contributions to c7&c7’ here are the same 
one we can extract from the b➔sγ induced processes.
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︸ ︷︷ ︸

O1∼10: penguin operator

− mbE
′
0(xt)s̄LσµνqνbR

︸ ︷︷ ︸

O7γ,8g: magnetic operator







! Magnetic-Operator (evidence of V − A theory)

" Chirality-flip L → R on the b quark induces the factor mb

" Induce a relatively large b → sγ

Caveat: photon polarisation necessary for confirmation

! If the new physics induces chirality-flip then it is no more pro-
portional to the external mass but to the internal mass...

" The SUSY breaking term induces the chirality-flip propa-

gator b̃R − s̃L (chirality-flip occurs on the internal-line).

" As a result, this term is enhanced by the gluino mass!:

mg̃s̄LσµνqνbR × δ23
LR × loop

photon on-shell
and bR!sL "L, 

photon off-shell
= not polarized

(e.g. semi-leptonic)

9

e   

mssRσµνqνbL

! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)

W-boson couples 
only left-handed

γ of b ➞s γ should be 
circularly-polarized

Opposite 
chirality is 

suppressed by 
a factor ms/mb

-

b s
W−

γ
R L

L

However, this left-handedness of the 
polarization of b ➔s γ has never been 
confirmed at a high precision yet!! 

New physics contributions to c7&c7’ here are the same 
one we can extract from the b➔sγ induced processes.
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! b ➔s γL (left-handed polarization)
! b ➔s γR (right-handed polarization)

W-boson couples 
only left-handed

γ of b ➞s γ should be 
circularly-polarized

Opposite 
chirality is 

suppressed by 
a factor ms/mb

-

b s
W−

γ
R L

L

However, this left-handedness of the 
polarization of b ➔s γ has never been 
confirmed at a high precision yet!! 

AT(2) and AT(im) are indeed sensitive to the 
right-handed contribution.                        

the measurement of I3,9(q2) and Is2,6(q
2) allows us to determine A(2, im, re)

T directly from the

fit.

Note that A(2, im, re)
T (q2) involve only A‖,⊥(q2) and not the longitudinal and time-like

amplitudes A0,t(q2) (see Eq. (48)). As emphasized by one of the authors [27], the advan-

tage of using the quantities that include only A‖,⊥ is that they do not require a detailed

knowledge of hadronic form factors T3(q2) and A2,0(q2) which are quite hard to compute

using the lattice QCD simulations. Moreover, as it was verified in Ref. [27], the ratios

A1(q2)/T2(q2) and V (q2)/T1(q2) are flat in the low q2-region which makes the relevant

hadronic uncertainties to be better controlled.

One can easily demonstrate that

lim
q2→0

A(2)
T (q2) =

2Re[C7γC ′ ∗
7γ ]

|C7γ|2 + |C ′
7γ|2

, (24a)

lim
q2→0

A(im)
T (q2) =

2Im[C7γC ′ ∗
7γ ]

|C7γ|2 + |C ′
7γ|2

, (24b)

lim
q2→0

A(re)
T (q2) =0 . (24c)

This is the consequence of the fact that in the very low !+!− invariant mass region

the O7γ operator is dominant with respect to the semileptonic O9,10 operators. Note

that approximation of Eq. (24) is strictly valid only at q2 = 0, and away from this

point the expressions for A(2, im, re)
T (q2) become more complicated due to the non-negligible

contributions from the other terms proportional to C (′)
9,10 (see Eq. (48)). In practice, we

work with binned experimental distributions within a range of q2 and the full expression,

involving C (′)
9,10, should be used. Note however that at low q2 the impact of C9,10 is very

small.

Unlike A(2, im)
T (0) whose values can change considerably if NP affects the coefficients

C (′)
7γ , the third asymmetry A(re)

T (0) remains insensitive to NP. The q2-shapes of three

asymmetries can give important hints of the presence of NP in some scenarios [27].

The new analysis of the B → K∗e+e− decay mode by the LHCb collaboration [29]

shows that one can expect an annual yield of 200 to 250 events for 2 fb−1 in the region

30 MeV <
√

q2 < 1 GeV which would amount to an error on A(2)
T about

σLHCb(A(2)
T ) ∼ 20% . (25)

3.4 Comparison of the methods: advantages and disadvantages

First, it should be noticed that the measurements of the time-dependent CP -asymmetry

in B → K∗(→ KSπ0)γ and of the two transverse asymmetries A(2, im)
T (q2) in B → K∗!+!−

are proportional to the absolute value of the ratio

r =
C ′

7γ

C7γ
, (26)
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New physics contributions to c7&c7’ here are the same 
one we can extract from the b➔sγ induced processes.



Right-handed: which NP model?
What types of new physics models?                                
For example, models with right-handed 
neutrino, or custodial symmetry in general 
induces the right handed current. 
  

 
Which flavour structure?                           
The models that contain new particles which 
change the chirality inside of the b➔sγ loop 
can induce a large chiral enhancement! 

Left-Right symmetric 
model: mt/mb

SUSY with δRL mass 
insertions: mSUSY/mb

Cho, Misiak, PRD49, ’94 
Babu et al PLB333 ‘94

Gabbiani, et al.  NPB477 ’96
Ball, EK, Khalil, PRD69 ‘04

Blanke et al. JHEP1203                     Girrbach et al. JHEP1106 

b s
W−

γ
R L

L

???

Left-Right symmetric 
model (WR)

SUSY GUT model δRR 
mass insertion

NP signal 
beyond the 

constraints from 
Bs oscillation 
parameters 
possible.



Theoretical interests in searching 
right-handed current using b➔sγ

Left-Right symmetry is often required for 
building new physics models in order to 
satisfy the electroweak data of rho≃1. 
SUSY-GUT models often induces right-
handed current in relation to the right-
handed neutrino. 
etc... 
In addition, when there is a new particle in 
the loop which changes the chirality inside 
of the loop, there is chiral enhancement! 

b
s

W−

γ

R L

?!

???

Left-Right symmetric 
model: mt/mb

SUSY with δRL mass 
insertions: mSUSY/mb

examples

We can allow a large new physics enhancement in 
b➔sγ/b ➔sg (on-shell s/g), despite of the strong 

constraints on e.g. Bs box diagram, namely ΔMs and Φs. 

Babu, Fujikawa, Yamada 
PLB333 ‘94

Gabbiani, Gabrielli, Masiero, 
Silvestrini     NPB477 ‘96

Ball, EK, Khalil, 
PRD69 ‘04



Example of chiral enhancement:
=SUSY with δRL mass insertions=

!0.2 !0.1 0.0 0.1 0.2

!0.2

!0.1

0.0

0.1

0.2

ReRL

Im
RL

Constraints from B➔Xsγ 
branching ratios:

Constraints from Bs mixing 
parameters (DMs and phis): 

!0.010 !0.005 0.000 0.005 0.010
!0.010

!0.005

0.000

0.005

0.010

ReRL

Im
RL

--- ΔMs
  Φs



Current constraints on C7&C7’
We can write the amplitude including RH contribution as:

M(b → sγ) " −4GF√
2

V ∗
tsVtb



(CSM
7γ + CNP

7γ )〈O7γ〉︸ ︷︷ ︸
∝ML

+C ′NP
7γ 〈O′

7γ〉︸ ︷︷ ︸
∝MR





Br(B → XSγ) ∝ |CSM
7γ + CNP

7γ |2 + |C ′NP
7γ |2

  (3.43 ± 0.21 ± 0.07)x10-4HFAG

φR = arg

[
C ′NP

7γ

CSM
7γ

]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2

sin(2φ1 − φR)

  SKsπ0γ=-0.15 ± 0.2HFAG

Constraints from inclusive branching ratio

Constraints from Time dependent CPV of SKsπ0γ



  (3.43 ± 0.21 ± 0.07)x10-4

Current constraints on C7&C7’
We can write the amplitude including RH contribution as:

M(b → sγ) " −4GF√
2

V ∗
tsVtb



(CSM
7γ + CNP

7γ )〈O7γ〉︸ ︷︷ ︸
∝ML

+C ′NP
7γ 〈O′

7γ〉︸ ︷︷ ︸
∝MR





Br(B → XSγ) ∝ |CSM
7γ + CNP

7γ |2 + |C ′NP
7γ |2

HFAG

φR = arg

[
C ′NP

7γ

CSM
7γ

]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2

sin(2φ1 − φR)

  SKsπ0γ=-0.16 ± 0.22HFAG

Constraints from inclusive branching ratio

Constraints from Time dependent CPV of SKsπ0γ

In principle, 
C7&C7’ can be 

complex number, so 
we have four 

parameters  to 
constrain. 



Current constraints on C7&C7’
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7
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"
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C (′) (NP)
7γ ∈ R
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Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N

P
# $C 7Γ"SM

# % CL$68%
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S"B0&KSΠ0Γ#BR"B&XsΓ#

(b)

C (NP)
7γ = 0
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Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N
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# $C 7Γ"SM
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(c)

C (NP)
7γ = C ′ (NP)

7γ
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Im
!C 7Γ#"N

P
# $C 7Γ"SM

# % CL$68%
CL$95%
S"B0&KSΠ0Γ#BR"B&XsΓ#

(d)

C (NP)
7γ = −C ′ (NP)

7γ

Figure 3: Current constraints from the combination of the inclusive decay rate and the mixing-induced
CP -asymmetry in B → K∗(→ KSπ0)γ. In Fig. (a) we present the constraints in particular NP scenario
where both C7γ and C ′

7γ are real. In Fig. (b, c, d), for illustration, we consider several NP scenarios

with the left-handed coefficient C (NP)
7γ = 0, C ′ (NP)

7γ , −C ′ (NP)
7γ respectively. Gray (dark gray) bound

represents the ±3σ (±1σ) constraint from the B(B → Xsγ) measurement. Orange (dark orange) region
represents the ±3σ (±1σ) constraint from the current SKSπ0γ measurement. The light and dark blue

regions correspond respectively to the 95% and 68% CL bounds for C ′ (NP)
7γ , obtained from the χ2-fit of

the present measurements of B(B → Xsγ) and SKSπ0γ .
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Constraint expectation from AT(2) and AT(im)

Becirevic, EK, Le Yaouanc, Tayduganov arXive:1206.1502

Scenario (b): New physics with only RH (C7NP=0)
Expected constraint from 

ΑΤ(2), ΑΤ(im) measurement with 10% precision
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C9&C10 assumed to be SM. The q2 dependence (dashed) small



Constraint expectation from AT(2) and AT(im)

Becirevic, EK, Le Yaouanc, Tayduganov arXive:1206.1502

Scenario (c): New physics with LR=RH (C7NP=C7’NP)
Expected constraint from 

ΑΤ(2), ΑΤ(im) measurement with 10% precision

C9&C10 assumed to be SM. The q2 dependence (dashed) large
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Figure 9: Prospect of the future constraints on C ′
7γ in the NP scenarios II (a, b) and III (c, d). The

solid and dashed curves correspond respectively to A(2, im)
T (0) and to A(2, im)

T integrated over q2 in the
[4m2

" , 1 GeV2] range (for details see the text).

The sfermion propagator can then be expanded as [33]

〈q̃Aiq̃
∗
Bj〉 = i(k2 −m2

q̃ −∆q
AB)

−1
ij $ iδij

k2 −m2
q̃

+
i(∆q

AB)ij
(k2 −m2

q̃)
2
+ . . . , (37)

where mq̃ is the average squark mass. Assuming that ∆2 % m2
q̃, so that the first term in

expansion is sufficient, the flavour violation can be parametrized in a model independent

way by the dimensionless MIA parameters

(δqAB)ij =
(∆q

AB)ij
m2

q̃

, (38)

the values of which can be constrained by various flavour experiments.

Let us consider the dominant gluino contribution to the C (′)
7γ Wilson coefficients6.

6At leading order, both the charged Higgs and the chargino contributions to C ′
7γ, 8g are suppressed by

ms/mb. For simplicity, we do not present these last contributions here.
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Comparison of the three methods

‣Method 1: Time dependent CP asymmetry in Bd➔KSπ0γ Bs➔Κ+Κ-γ 
(called SKSπ0γ, SΚ+Κ-γ)

‣Method II: Transverse asymmetry in Bd➔K*l+l-(called ΑΤ(2), ΑΤ(im))

‣Method III: B➔K1(➔Kππ)γ (called λγ)

proposed methods

φR = arg

[
C ′NP

7γ

CSM
7γ

]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2

sin(2φ1 − φR)

A(2)
T (q2 = 0) =

2Re[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

A(im)
T (q2 = 0) =

2Im[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

λ =
|C ′NP

7γ |2 − |CSM
7γ |2

|C ′NP
7γ |2 + |CSM

7γ |2

Becirevic, EK, Le Yaouanc, Tayduganov arXive:1206.1502

EK, Le Yaouanc, A.Tayduganov, PRD83 (‘11)



‣Method 1: Time dependent CP asymmetry in Bd➔KSπ0γ Bs➔Κ+Κ-γ 
(called SKSπ0γ, SΚ+Κ-γ)

‣Method II: Transverse asymmetry in Bd➔K*l+l-(called ΑΤ(2), ΑΤ(im))

‣Method III: B➔K1(➔Kππ)γ (called λγ)

proposed methods

φR = arg

[
C ′NP

7γ

CSM
7γ

]
SKSπ0γ =

2|CSM
7γ C ′NP

7γ |
|CSM

7γ |2 + |C ′NP
7γ |2

sin(2φ1 − φR)

A(2)
T (q2 = 0) =

2Re[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

A(im)
T (q2 = 0) =

2Im[CSM
7γ C ′NP∗

7γ ]
|CSM

7γ |2 + |C ′NP
7γ |2

λ =
|C ′NP

7γ |2 − |CSM
7γ |2

|C ′NP
7γ |2 + |CSM

7γ |2

Super Flavo
ur Factorie

s

σSKsπγ(0.02)

LHCb
σAT2

(im)(0.2)

Super Flavo
ur Factory/

LHCb

σλ(0.1-0.2)

Comparison of the three methods
Becirevic, EK, Le Yaouanc, Tayduganov arXive:1206.1502



!2 !1 0 1 2

!2

!1

0

1

2

Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N

P
# $C 7Γ"SM

# %

!0.8

!0.6

!0.4

!0.2

0.0

0.2

0.4

S

(a)B → KSπ0γ

!2 !1 0 1 2

!2

!1

0

1

2

Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N

P
# $C 7Γ"SM

# %

!1

!0.8

!0.6

!0.4

ΛΓ
(b)B → K1γ

!2 !1 0 1 2

!2

!1

0

1

2

Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N

P
# $C 7Γ"SM

# %

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

AT
"2#

(c)B → K∗#+#−

!2 !1 0 1 2

!2

!1

0

1

2

Re!C7 Γ# "NP#$C7 Γ"SM#%

Im
!C 7Γ#"N

P
# $C 7Γ"SM

# %

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

AT
"im#

(d)B → K∗#+#−

Figure 5: Prospect of the future constraints on C (′)
7γ in the NP scenario II: C (NP)

7γ is purely SM-like, i.e.

C (NP)
7γ = 0. The contour colours in Fig. (a, b, c, d) correspond respectively to SKSπ0γ , λγ , A(2)

T (0) and

A(im)
T (0) allowed by a ±3σ error to the central value of Bexp(B → Xsγ).

within the region allowed by B(B → Xsγ). One can make a general statement that if one

experimentally finds SKSπ0γ " 0, it will imply |r| " 0 or φL + φR " 2β " 43◦.

This problem can be partially solved by adding a constraint from λγ which is a circle

since λγ is a function of |r|2 and therefore is insensitive to the complex phases. The

SM prediction corresponds to the central point C (NP)
7γ = C ′ (NP)

7γ = (0, 0). Near the

center λγ = λSM
γ " −1, and the sensitivity to C ′

7γ is very low. For λγ " −0.8 we have

|C ′ (NP)
7γ /C (SM)

7γ | " 0.3 (i.e. one is clearly outside the SM prediction), but inside the circle

one cannot distinguish the NP contribution from the SM one.

The combined measurement of A(2)
T (q2) and A(im)

T (q2) can, in principle, constraint both

|r| and the relative phase φL − φR (or equivalently, Re[r] and Im[r]) independently on

SKSπ0γ and λγ. In contrast to λγ, it is also sensitive to the SM prediction.

In Fig. 6 and 7, we present our results for scenarios III and IV. The combination of

the A(2)
T and A(im)

T measurements, contrary to the scenario II, leaves a twofold ambiguity

since the constraint from A(2)
T becomes a circle. In these two scenarios, the three- and

fourfold ambiguities of the SKSπ0γ constraint can be removed by adding the λγ and A(2, im)
T

constraints.
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Figure 6: Prospect of the future constraints on C (′)
7γ in the NP scenario III: C (NP)

7γ = C ′ (NP)
7γ . The

contour colours in Fig. (a, b, c, d) correspond respectively to SKSπ0γ , λγ , A(2)
T (0) and A(im)

T (0) allowed by
a ±3σ error to the central value of Bexp(B → Xsγ).

A pleasant feature of Fig. 4–7 is that the shapes of the resulting plots are quite

different in NP scenarios. The four constraints will overlap in scenarios compatible with

measured SKSπ0γ, λλ and A(2, im)
T and we will be able to extract C (′)

7γ and their phases. In

incompatible scenarios, the four constraints will not overlap.

Once again, we stress that we can determine C ′
7γ/C7γ from SKSπ0γ only in combination

with the B −B mixing phase, φM . In this paper we assume that NP does not bring any

significant contribution to the B−B mixing box diagrams and use the currently measured

value, sin 2β = 0.673 ± 0.023 [31]. The impact of the uncertainty on sin 2β is depicted

in Fig. 8(a) with multiple orange bands, labeled with values of SKSπ0γ. In future, super

B factories will be able to measure the asymmetry within the 2% error, which means that

we will have a very thin constraint along one of the black lines in Fig. 8(b) within the red

bands which represent ±1σ = ±0.02 regions. One can notice that theoretical uncertainty

on SKSπ0γ, coming from the B − B mixing phase determination, will be comparable to

the experimental one at the super B factories.
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‣ We discussed the transverse asymmetries of Bd➔K*l+l- at low 
q2, namely ΑΤ(2), ΑΤ(im). 

‣The new physics contributions sensitive to ΑΤ(2), ΑΤ(im) at q2=0 
are those sensitive to other b➔sγ observables (C7&C7’). 

‣I showed a comparison of the three methods to extract 
C7&C7’. 

‣Advantage of ΑΤ(2), ΑΤ(im) is that they are related to the first 
order in terms of the |C7’/C7|.

‣Disadvantage of ΑΤ(2), ΑΤ(im), we need assumption for C9&C10 
for q2≠0 to constrain |C7’/C7|. 

‣The best would be to use different methods and measure 
C7&C7’ independently. 

Summary
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Polarization measurement using 
B➔K1(➔Kππ)γ: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Measuring the photon polarization using 

B!K1(1400)! (!K""!) 
Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Left

Right

!

" K*

Measuring the photon polarization using 

B!K1(1400)! (!K""!) 

Left

Right

!

"

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

# K1

Why do we use K1(1400)? 

K1(1400) decays to three bodies. Why do we need three body channel to start with???
2 body decay 3 body decay

NG GOOD

Decays are symmetric along the 
helicity axis. No LR distinction! 

Three body decays can make an 
angle to the plane!
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# K1
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K1(1400) decays to three bodies. Why do we need three body channel to start with???
2 body decay 3 body decay

NG GOOD

Measuring the photon polarization using 

B!K1(1400)! (!K""!) 

• Up-Down Asymmetry: 

• Count the number of events with photon above/below 
the K1 decay plane and subtract them. 

!
K1 rest frame 

p1

p2

p3

"

"

n=p1xp
2

^

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

"+"-

K-

n=p1xp2
^

A =

∫ π/2
0 d|M|2dθ −

∫ π
π/2 d|M|2dθ

∫ π
0 d|M|2dθ

Count the number of events 
with photon above/below the K1 
decay plane and subtract them. 

Up-Down asymmetry



Gronau, Grossman, Pirjol, Ryd hep-ph/0107254
Up-Down asymmetry

A =

∫ π/2
0 d|M|2dθ −

∫ π
π/2 d|M|2dθ

∫ π
0 d|M|2dθ

=
3
4
〈Im(n̂ · ( "J × "J∗))〉

〈| "J |2〉
|cR|2 − |cL|2

|cR|2 + |cL|2
|C ′

7γ |2 − |C7γ |2

|C ′
7γ |2 + |C7γ |2

︸ ︷︷ ︸

〈Im(n̂ · ( !J × !J∗))〉
〈| !J |2〉︸ ︷︷ ︸

Helicity amplitude 
of K1➔Kππ!J : λ :Polarization parameter

Angular distribution of 
K1 decay

Circularly-polarization 
measurement of γ 

Polarization measurement using 
B➔K1(➔Kππ)γ: the method by Gronau et al.
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Polarization measurement using 
B➔K1(➔Kππ)γ: the method by Gronau et al.

K*0

K+
1 (p)→ π+(p1)π−(p2)K+(p3)

ρ0

Source of 
imaginary part

Breit-Wigner of 
two resonances➮



Branching ratio measurements: (x10-5)

B+ comment B0 comment
K1(1270)γ 4.3± 1.2 < 5.8
K1(1400)γ < 1.5 < 1.5

K∗π0γ 2.0± 0.7 MKππ < 2.4 GeV
Kρ0γ < 2.0 MKππ < 2.4 GeV

K+π+π−γ 2.76± 0.18 NA
K0π+π−γ NA 1.95± 0.22 MKππ < 1.8 GeV
K0π+π0γ 4.5± 0.52 MKππ < 1.8 GeV NA
K+π+π0γ NA 4.07± 0.38 MKππ < 1.8 GeV

K∗γ 4.57± 0.19 4.45± 0.15
K∗

2 (1430)γ 1.45± 0.43 1.24± 0.24

Be
lle

 ’0
2 

‘0
4

Ba
ba

r ‘
05

Belle Observation of B➔K1(1270)γ !

Belle reported an observation of B➔K1(1270)γ (7.3σ). 
So far, B➔K1(1400)γ has not yet been observed.  

Talk by S.Nishida at CKM2008 



EK, Le Yaouanc, A.Tayduganov, PRD83 (‘11)

DDLR method: improved polarization 
measurement using B➔K1(➔Kππ)γ

dΓ
ds13ds23dcos θ

∝ 1
4

| "J |2(1 + cos2 θ) + λ
1
2
Im

[
"n · ( "J × "J∗)

]
cos θ

DDLR method Davier, Duflot, Le Diberder, 
Rouge, PLB306 ‘93

✓ The polarization information is not only in the angular 
distribution but also in the Dalitz distribution.

✓ When the PDF depends only linearly to the polarization 
parameter, one can simplify the analysis using the ω variable. 

Applied to the τ polarization 
measurement at ALEPH

ω(s13, s23, cos θ) ≡ 2Im[#n · ( #J × #J∗)]cos θ

| #J |2(1 + cos2 θ)
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ω(s13, s23, cos θ) ≡ 2Im[#n · ( #J × #J∗)]cos θ

| #J |2(1 + cos2 θ)

Determination of λγ in the DDLR method
Basic idea of the DDLR method

The original PDF (i.e. the
normalized decay width
distribution) can be written as

W (s13, s23, cos θ) = f (s13, s23, cos θ)

+ λγg(s13, s23, cos θ)

= f · (1 + λγω)

⇒W ′(ω) = ϕ(ω)(1 + λγω)

Using the maximum likelihood
method, we obtain λγ as a
solution of the following
equation:

∂ lnL
∂λγ

=
NeventsX

i=1

ωi

1 + λγωi
= 0

Notice: resulting solution does not de-
pend on f and g separately but only on
their ratio ω.

Since W ′ depends on λγ linearly, one
can reduce a multi-dimensional fit to
a one-dimensional, using variable ω ≡
g/f !

!
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How to use the ω variable?
For each event ξi(s13,s23,cosθ): 

1. Compute the ω value knowing 
the function J (s13,s23,cosθ).
2. Make a ω distribution.
3. Polarization is then obtained!

λ =
〈ω〉
〈ω2〉

ω

---  λ=+1
---  λ=-1

DDLR method: improved polarization 
measurement using B➔K1(➔Kππ)γ
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ω(s13, s23, cos θ) ≡ 2Im[#n · ( #J × #J∗)]cos θ

| #J |2(1 + cos2 θ)

Sensitivity studies of λγ measurement in the DDLR method
Results: Monte Carlo simulation

We estimate the sensitivity of future experiments to λγ using “ideal” (i.e. de-
tector effects and background are not taken into account) MC simulation.

Stat. errors to λ(SM)
γ from B → K1(1270)γ

Nevents 103 104

(I) B+ → K+π−π+γ ±0.18 ±0.06
(II) B+ → K 0π+π0γ ±0.12 ±0.04
(III) B0 → K 0π+π−γ ±0.18 ±0.06
(IV) B0 → K+π−π0γ ±0.12 ±0.04

For 10k events the error on λγ is
! 10%.

[Kou,Le Yaouanc&A.T., Phys.Rev.D83 (’11)]

The use of the Dalitz plot
information improves the
sensitivity by a factor 2
compared to the pure angular
cos θ-fit (or Aup−down).

Aup!down!I, III"
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DDLR!II, IV"
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Our study shows that DDLR method reduces the 
statistical errors in λ by a factor of two comparing 
to the up-down asymmetry.

DDLR method: improved polarization 
measurement using B➔K1(➔Kππ)γ

~10% accuracy achievable!
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Our study shows that DDLR method reduces the 
statistical errors in λ by a factor of two comparing 
to the up-down asymmetry.

Angular & Dalitz 
distribution of K1 decay

Circularly-polarization 
measurement of γ 

We need detailed information on 
the hadronic amplitude of K1➔Kππ

DDLR method: improved polarization 
measurement using B➔K1(➔Kππ)γ



 A.Tayduganov, EK, Le Yaouanc, to be published in PRD

Strong decay of K1➔Kππ

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

B➔J/ΨK1, τ➔K1ν...
2. Model dependent extraction i.e. theoretical estimate

Assume K1➔Kππ comes from quasi-two-body 
decay, e.g. K1➔K*π, K1➔ρK, then, J function can be 
written in terms of:
‣4 form factors (S,D partial wave amplitudes) 
‣2 couplings (gK*Kπ, gρππ)
‣1 relative phase between two channel

Modeling J function:



 A.Tayduganov, EK, Le Yaouanc, to be published in PRD

Strong decay of K1➔Kππ

Model parameters are extracted by fitting to data:

✓ Br(K1(1270)➔K*π)/Br(K1(1270)➔ρK)=0.24±0.09

✓ Br(K1(1400)➔ρK)/Br(K1(1400)➔K*π)=0.01±0.01

✓ Br(K1(1400)➔K*π)D-wave/Br(K1(1400)➔K*π) S-wave =0.04±0.01

✓ Br(K1(1270)➔K*π)D-wave/Br(K1(1270)➔K*π) S-wave =2.67±0.95

Brandenburg et al, 
Phys Rev Lett, 36 (‘76)
Otter et al, 
Nucl Phys, B106 (‘77) 
Daum et al, 
Nucl Phys, B187 (‘81)

Recent Belle measurement of B➔J/ΨK1 fixed the relative phase!!

Strong interaction decays of the K1-mesons
Kρ/K∗π phase issue

Im[#n · ( #J × #J ∗)] is sensitive to the relative phase between K∗π and Kρ.

δρ ≡ arg
»

AS(K1 → Kρ)× AP(ρ→ ππ)
AS(K1 → K∗π)× AP(K∗ → Kπ)

–

In the models, δρ ∼ 0 or π but this is not what is found.

The relative sign of two amplitudes, predicted by QPCM, can be verified
using the recent exp. data on the B → Kππψ decay [Belle (’10)].

The interference between the Kρ and K∗π amplitudes is responsible for
the abrupt fading of the K∗(892) signal at MKπ > MK∗(892).

Belle data prediction with
correct sign

prediction with
wrong sign

We confirm the sign, predicted by QPCM. 19 / 29
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Reducing hadronic uncertainty is important. 
Model independent analysis is ideal... 


