Theoretical interests on measuring C_7'

Emi KOU (LAL/IN2P3-Orsay)

in collaboration with D.Becirevic, A.Tayduganov&A.LeYaouanc

Workshop on the physics reach of rare and excludive B decays Sussex University 10th-11th September 2012

The b \rightarrow sll at low q²

 \gg At the limit of q²=0, the b \rightarrow sll process approaches to b \rightarrow s $\gamma \rightarrow$ sll.

Thus, the interest at low q² is the c₇&c₇' measurement.
A clean observable proposed:
Kruger, M

Kruger, Matias PRD71 Becirevic, Schneider, NPB854

$$\lim_{q^2 \to 0} \mathcal{A}_T^{(2)}(q^2) = \frac{2\mathcal{R}e[C_{7\gamma}C_{7\gamma}'^*]}{|C_{7\gamma}|^2 + |C_{7\gamma}'|^2}$$

$$\lim_{q^2 \to 0} \mathcal{A}_T^{(\text{im})}(q^2) = \frac{2\mathcal{I}m[C_{7\gamma}C_{7\gamma}'^*]}{|C_{7\gamma}|^2 + |C_{7\gamma}'|^2}$$

Observables at low q^2 (A_T ⁽²⁾ and A_T ^(im))

 $\gg A_T^{(2)}$ and $A_T^{(im)}$ are written in terms of transverse amplitudes:

* We will come back to the issue of $\Delta q^2 \neq 0$ effect later

New physics sensitive to $A_T^{(2)}$ and $A_T^{(im)}$ New physics contributions to c7&c7' here are the same one we can extract from the $b \rightarrow s\gamma$ induced processes R The O7 has a particular structure in SM $\bar{b}A_{\mu}s = -iV_{tb}V_{ts}^* \frac{G_F}{\sqrt{2}} \frac{\mathbf{e}}{8\pi^2} \left| \underbrace{\frac{E_0(x_t)\bar{s}_L(q^2\gamma_{\mu} - q_{\mu}\mathbf{q})b_L}{O_{9\sim10}: \text{ penguin operator}}}_{O_{7\gamma,8g}: \text{ magnetic operator}} \right|^{-1} \underbrace{\frac{m_bE_0'(x_t)\bar{s}_L\sigma_{\mu\nu}q^{\nu}b_R}{O_{7\gamma,8g}: \text{ magnetic operator}}}_{O_{7\gamma,8g}: \text{ magnetic operator}} \right|^{-1}$ photon off-shell photon on-shell R→SL YL, However, this left-handedness of the polarization of $b \rightarrow s \gamma$ has never been confirmed at a high precision yet!! $m_s \overline{s}_R \sigma_{\mu\nu} q^{\nu} b_L$ Opposite b \rightarrow s γ_L (left-handed polarization) E chirality is b \rightarrow s γ_R (right-handed polarization) suppressed by a factor m_s/m_b

Right-handed: which NP model?

What types of new physics models?

For example, models with right-handed neutrino, or custodial symmetry in general induces the right handed current.

Blanke et al. JHEP1203

Which flavour structure?

The models that contain new particles which change the chirality inside of the b \rightarrow s γ loop can induce a large chiral enhancement!

Left-Right symmetric model: mt/mb

Cho, Misiak, PRD49, '94 Babu et al PLB333 '94 SUSY with δ_{RL} mass insertions: m_{SUSY}/mb

Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 '04 NP signal beyond the constraints from Bs oscillation parameters possible.

R

Theoretical interests in searching right-handed current using $b \rightarrow s\gamma$

Left-Right symmetry is often required for building new physics models in order to satisfy the electroweak data of rho~1.

SUSY-GUT models often induces righthanded current in relation to the righthanded neutrino.

⋗ etc...

In addition, when there is a new particle in the loop which changes the chirality inside of the loop, there is chiral enhancement!

We can allow a large new physics enhancement in b→sγ/b →sg (on-shell s/g), despite of the strong constraints on e.g. Bs box diagram, namely ΔMs and Φs.

Example of chiral enhancement: =SUSY with δ_{RL} mass insertions=

Constraints from Bs mixing parameters (DMs and phis):

Constraints from B→X_sγ branching ratios:

Current constraints on C7&C7'

We can write the amplitude including RH contribution as:

$$\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\propto \mathcal{M}_L} + \underbrace{C_{7\gamma}^{\prime \mathrm{NP}} \langle \mathcal{O}_{7\gamma}^{\prime} \rangle}_{\propto \mathcal{M}_R} \right]$$

Constraints from inclusive branching ratio

$$Br(B \to X_S \gamma) \propto |C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2$$

HFAG $(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$

 \triangleright Constraints from Time dependent CPV of S_{KsmOY}

$$S_{K_S \pi^0 \gamma} = \frac{2|C_{7\gamma}^{\rm SM} C_{7\gamma}^{\prime \rm NP}|}{|C_{7\gamma}^{\rm SM}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2} \sin(2\phi_1 - \phi_R) \qquad \phi_R = \arg\left[\frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM}}\right]$$

HFAG $S_{Ks\pi0Y}$ =-0.15 ± 0.2

Current constraints on C7&C7'

We can write the amplitude including RH contribution as:

Constraints from inclusive branching ratio

$$Br(B \to X_S \gamma) \propto |C_{7\gamma}^{\rm SM} + C_{7\gamma}^{\rm NP}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2$$

 $\mathcal{M}(b \to s\gamma) \simeq -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[\underbrace{(C_{7\gamma}^{\mathrm{SM}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\sim \mathcal{M}_I} + \underbrace{(C_{7\gamma}^{\mathrm{NP}} + C_{7\gamma}^{\mathrm{NP}}) \langle \mathcal{O}_{7\gamma} \rangle}_{\sim \mathcal{M}_I} + \underbrace{(C_{7\gamma}^{$ In principle, $C_7 \& C_7'$ can be complex number, so we have four parameters to constrain.

HFAG $(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$

Sconstraints from Time dependent CPV of S_{κsπ0γ}

$$S_{K_S \pi^0 \gamma} = \frac{2|C_{7\gamma}^{\rm SM} C_{7\gamma}^{\prime \rm NP}|}{|C_{7\gamma}^{\rm SM}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2} \sin(2\phi_1 - \phi_R) \qquad \phi_R = \arg\left[\frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM}}\right]$$

HFAG $S_{Ks\pi0Y} = -0.16 \pm 0.22$

Current constraints on C7&C7'

Constraint expectation from $A_T^{(2)}$ and $A_T^{(im)}$

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

 $C_9\&C_{10}$ assumed to be SM. The q² dependence (dashed) small

Constraint expectation from $A_T^{(2)}$ and $A_T^{(im)}$

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

 $C_9\&C_{10}$ assumed to be SM. The q² dependence (dashed) large

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

Method I:Time dependent CP asymmetry in $B_d \rightarrow K_S \pi^0 \gamma B_s \rightarrow K^+ K^- \gamma$ (called $S_{KS\pi0\gamma}$, $S_{K+K-\gamma}$)

$$S_{K_S \pi^0 \gamma} = \frac{2|C_{7\gamma}^{\rm SM} C_{7\gamma}^{\prime \rm NP}|}{|C_{7\gamma}^{\rm SM}|^2 + |C_{7\gamma}^{\prime \rm NP}|^2} \sin(2\phi_1 - \phi_R) \qquad \phi_R = \arg\left[\frac{C_{7\gamma}^{\prime \rm NP}}{C_{7\gamma}^{\rm SM}}\right]$$

► Method II: Transverse asymmetry in $B_d \rightarrow K^*I^+I^-$ (called $A_T^{(2)}$, $A_T^{(im)}$)

$$\mathcal{A}_{T}^{(2)}(q^{2}=0) = \frac{2Re[C_{7\gamma}^{\mathrm{SM}}C_{7\gamma}^{\prime\mathrm{NP}*}]}{|C_{7\gamma}^{\mathrm{SM}}|^{2} + |C_{7\gamma}^{\prime\mathrm{NP}}|^{2}} \quad \mathcal{A}_{T}^{(im)}(q^{2}=0) = \frac{2Im[C_{7\gamma}^{\mathrm{SM}}C_{7\gamma}^{\prime\mathrm{NP}*}]}{|C_{7\gamma}^{\mathrm{SM}}|^{2} + |C_{7\gamma}^{\prime\mathrm{NP}}|^{2}}$$

Method III: $B \rightarrow K_{I}(\rightarrow K\pi\pi)\gamma$ (called λ_{Y}) EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

$$\lambda = \frac{|C_{7\gamma}^{\prime \rm NP}|^2 - |C_{7\gamma}^{\rm SM}|^2}{|C_{7\gamma}^{\prime \rm NP}|^2 + |C_{7\gamma}^{\rm SM}|^2}$$

Comparison of the three methods

Becirevic, EK, Le Yaouanc, Tayduganov arXive: 1206.1502

Figure 5: Prospect of the future constraints on $C_{7\gamma}^{(\prime)}$ in the NP scenario II: $C_{7\gamma}^{(\text{NP})}$ is purely SM-like, i.e. $C_{7\gamma}^{(\text{NP})} = 0$. The contour colours in Fig. (a, b, c, d) correspond respectively to $S_{K_S\pi^0\gamma}$, λ_{γ} , $\mathcal{A}_T^{(2)}(0)$ and $\mathcal{A}_T^{(\text{im})}(0)$ allowed by a $\pm 3\sigma$ error to the central value of $\mathcal{B}^{\exp}(B \to X_s\gamma)$.

Figure 6: Prospect of the future constraints on $C_{7\gamma}^{(\prime)}$ in the NP scenario III: $C_{7\gamma}^{(NP)} = C_{7\gamma}^{\prime(NP)}$. The contour colours in Fig. (a, b, c, d) correspond respectively to $S_{K_S\pi^0\gamma}$, λ_{γ} , $\mathcal{A}_T^{(2)}(0)$ and $\mathcal{A}_T^{(im)}(0)$ allowed by a $\pm 3\sigma$ error to the central value of $\mathcal{B}^{\exp}(B \to X_s\gamma)$.

Summary

- We discussed the transverse asymmetries of B_d→K^{*}l⁺l⁻ at low q², namely A_T⁽²⁾, A_T^(im).
- The new physics contributions sensitive to A_T⁽²⁾, A_T^(im) at q²=0 are those sensitive to other b→sγ observables (C₇&C₇′).
- I showed a comparison of the three methods to extract C₇&C₇'.
- Advantage of $A_T^{(2)}$, $A_T^{(im)}$ is that they are related to the first order in terms of the $|C_7'/C_7|$.
- Disadvantage of A_T⁽²⁾, A_T^(im), we need assumption for C₉&C₁₀ for q²≠0 to constrain |C₇[']/C₇|.
- The best would be to use different methods and measure C₇&C₇' independently.

Backup

Polarization measurement using $B \rightarrow K_1 (\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Why do we need three body channel to start with???

Polarization measurement using $B \rightarrow K_1(\rightarrow K \pi \pi) \gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Why do we need three body channel to start with???

Polarization measurement using $B \rightarrow K_1(\rightarrow K\pi\pi)\gamma$: the method by Gronau et al. Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Up-Down asymmetry

Polarization measurement using $B \rightarrow K_1(\rightarrow K\pi\pi)\gamma$: the method by Gronau et al.

Gronau, Grossman, Pirjol, Ryd hep-ph/0107254

Up-Down asymmetry

Belle Observation of $B \rightarrow K_1(1270)\gamma$!

Branching ratio measurements: (x10⁻⁵)

Belle reported an observation of $B \rightarrow K_{1(1270)}\gamma$ (7.3 σ). So far, $B \rightarrow K_{1(1400)}\gamma$ has not yet been observed.

DDLR method: improved polarization measurement using $B \rightarrow K_1 (\rightarrow K \pi \pi) \gamma$

EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

$$\frac{d\Gamma}{ds_{13}ds_{23}d\cos\theta} \propto \frac{1}{4}|\vec{J}|^2(1+\cos^2\theta) + \lambda \frac{1}{2}Im\left[\vec{n}\cdot(\vec{J}\times\vec{J}^*)\right]\cos\theta$$

DDLR method Applied to the T polarization Davier, Du measurement at ALEPH Rouge

Davier, Duflot, Le Diberder, Rouge, PLB306 '93

 \checkmark The polarization information is not only in the angular distribution but also in the Dalitz distribution.

 \checkmark When the PDF depends only linearly to the polarization parameter, one can simplify the analysis using the ω variable.

$$\omega(s_{13}, s_{23}, \cos \theta) \equiv \frac{2Im[\vec{n} \cdot (\vec{J} \times \vec{J}^*)]\cos \theta}{|\vec{J}|^2 (1 + \cos^2 \theta)}$$

DDLR method: improved polarization measurement using $B \rightarrow K_1(\rightarrow K\pi\pi)\gamma$

EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

$$\omega(s_{13}, s_{23}, \cos\theta) \equiv \frac{2Im[\vec{n} \cdot (\vec{J} \times \vec{J}^*)]\cos\theta}{|\vec{J}|^2(1 + \cos^2\theta)}$$

How to use the ω variable?

For each event $\xi_i(s_{13}, s_{23}, \cos_{\theta})$:

1. Compute the $\boldsymbol{\omega}$ value knowing

the function J $(s_{13}, s_{23}, cos_{\theta})$.

- 2. Make a ω distribution.
- 3. Polarization is then obtained!

DDLR method: improved polarization measurement using $B \rightarrow K_1 (\rightarrow K \pi \pi) \gamma$

EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

$$\omega(s_{13}, s_{23}, \cos \theta) \equiv \frac{2Im[\vec{n} \cdot (\vec{J} \times \vec{J}^*)]\cos \theta}{|\vec{J}|^2(1 + \cos^2 \theta)}$$

Our study shows that DDLR method reduces the statistical errors in λ by a factor of two comparing to the up-down asymmetry.

DDLR method: improved polarization measurement using $B \rightarrow K_1(\rightarrow K\pi\pi)\gamma$

EK, Le Yaouanc, A. Tayduganov, PRD83 ('11)

A.Tayduganov, EK, Le Yaouanc, to be published in PRD

How to extract the hadronic information (i.e. function J)?

1. Model independent extraction i.e. from data (most ideal)

 $B \rightarrow J/\Psi K_{1}, \tau \rightarrow K_1 v...$

2. Model dependent extraction i.e. theoretical estimate Modeling J function:

> Assume K₁→Kππ comes from quasi-two-body decay, e.g. K₁→K^{*}π, K₁→ρK, then, J function can be written in terms of: ↓4 form factors (S,D partial wave amplitudes)

▶ 2 couplings (g_{κ*κπ}, g_{ρππ})

▶1 relative phase between two channel

A. Tayduganov, EK, Le Yaouanc, to be published in PRD

Brandenburg et al,

Otter et al.

Daum et al.

Phys Rev Lett, 36 ('76)

Nucl Phys, B106 ('77)

Nucl Phys, B187 ('81)

Model parameters are extracted by fitting to data:

Br(K₁₍₁₂₇₀₎→K^{*}π)/Br(K₁₍₁₂₇₀₎→_QK)=0.24±0.09

 $F(K_{1(1400)} \rightarrow QK) / Br(K_{1(1400)} \rightarrow K^* \pi) = 0.01 \pm 0.01$

✓ Br(K₁₍₁₄₀₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₄₀₀₎→K^{*} π)_{S-wave} =0.04±0.01

✓ Br(K₁₍₁₂₇₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₂₇₀₎→K^{*} π)_{S-wave} =2.67±0.95

Recent Belle measurement of $B \rightarrow J/\Psi K_1$ fixed the relative phase!!

A. Tayduganov, EK, Le Yaouanc, to be published in PRD

Brandenburg et al,

Otter et al.

Daum et al.

Phys Rev Lett, 36 ('76)

Nucl Phys, B106 ('77)

Nucl Phys, B187 ('81)

Model parameters are extracted by fitting to data:

Br(K₁₍₁₂₇₀₎→K^{*}π)/Br(K₁₍₁₂₇₀₎→_QK)=0.24±0.09

 $F(K_{1(1400)} \rightarrow QK) / Br(K_{1(1400)} \rightarrow K^* \pi) = 0.01 \pm 0.01$

✓ Br(K₁₍₁₄₀₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₄₀₀₎→K^{*} π)_{S-wave} =0.04±0.01

✓ Br(K₁₍₁₂₇₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₂₇₀₎→K^{*} π)_{S-wave} =2.67±0.95

Recent Belle measurement of $B \rightarrow J/\Psi K_1$ fixed the relative phase!!

A. Tayduganov, EK, Le Yaouanc, to be published in PRD

Brandenburg et al,

Otter et al.

Daum et al.

Phys Rev Lett, 36 ('76)

Nucl Phys, B106 ('77)

Nucl Phys, B187 ('81)

Model parameters are extracted by fitting to data:

Br(K1(1270)→K^{*}π)/Br(K1(1270)→QK)=0.24±0.09

 $Br(K_{1(1400)} \rightarrow QK) / Br(K_{1(1400)} \rightarrow K^* \pi) = 0.01 \pm 0.01$

✓ Br(K₁₍₁₄₀₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₄₀₀₎→K^{*} π) S-wave =0.04±0.01

✓ Br(K₁₍₁₂₇₀₎→K^{*} π)_{D-wave}/Br(K₁₍₁₂₇₀₎→K^{*} π)_{S-wave} =2.67±0.95

Recent Belle measurement of $B \rightarrow J/\Psi K_1$ fixed the relative phase!!

