THE UNIVERSITY OF WARWICK

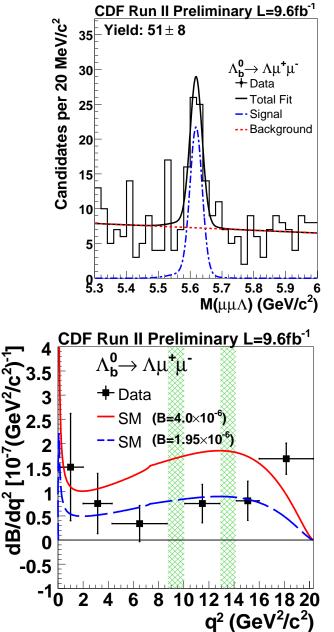
Baryons rare decays

M. Kreps

Physics Department

- Talk is only about Λ_b and Λ_c
- I'm experimentalist and while I touch theory, I'm not expert in it
- The aim is to stimulate discussion rather then giving you real overview

Motivation for baryons


- Production rate of Λ_b is only about 25% of B^0 production rate
- Clearly just adding Λ_b for statistics increase is not very useful
- For real motivation we need access to something which we cannot access in ${\cal B}^0$
- The added value comes from spin-1/2 initial state
 - More sensitivity to helicity structure of underlying theory
 - As far as I know there is not much of detailed discussion about it
 - Would be nice to have few specific examples where Λ_b decays allow to distinguish models when B^0 itself could not
- In following I concentrate on final states with muons, which are easier for hadron colliders
- Electrons certainly can be done, but probably not as first attempt
- Taus would be probably nice, but with number of neutrinos (2-4) and practically unknown Λ_b decays this is bit beyond chance right now

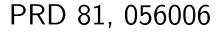
 $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ - Experiment

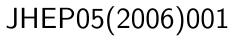
- Observe 51 ± 7 signal events
- Significance of the signal is 7.6 σ
- Also measured differential branching fraction
- Do not see any real signal below $c\bar{c}$ resonances
- Most of the signal in highest q^2 bin
- For branching fraction, CDF extracts: $B(\Lambda_b^0 \to \Lambda \mu \mu) / B(\Lambda_b^0 \to J/\psi \Lambda) = [2.75 \pm 0.48(stat) \pm 0.27(syst)] \times 10^{-3}$ $B(\Lambda_b^0 \to \Lambda \mu \mu) = [1.95 \pm 0.34(stat) \pm 0.61(syst)] \times 10^{-6}$
- LHCb is working on measurement, expect result sometimes in winter (crude estimate about 90 events)

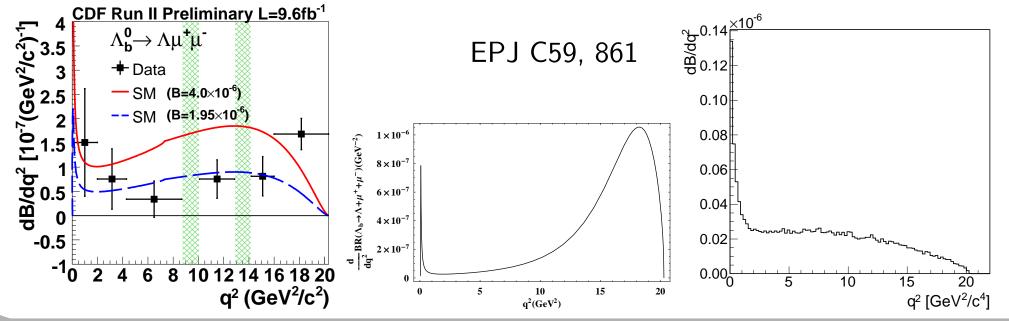
$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ - **Exp.** issues

- Generally, difficulties at low q^2
 - Λ get large fraction of Λ_b momentum
 - \blacksquare With long lifetime, many $\Lambda {\bf s}$ at low q^2 will decay after tracking detectors
- Λ_b has non-zero spin and in principle can be produced polarized
 - \blacksquare In fact for $\Lambda,$ production polarization was observed
 - With polarized production, we need to take it into account for angular analysis
 - Even branching fraction could be affected by polarization
 - Up to now we have low statistics and are fine with crude uncertainties, but at some point we will have to get better in this
- For angular analysis and measurement of quantities like A_{FB} we cannot do real q^2 dependence as all signal seems to be at high q^2
- I think we will have to do angular analysis first in q^2 bins where we have signal and see what we can learn

Other rare Λ_b decays

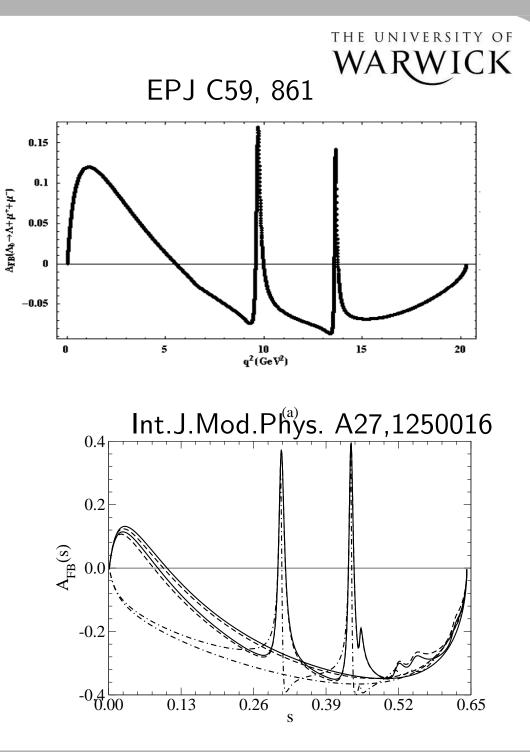

- \bullet One of the experimental difficulty is long lifetime of Λ
- \blacksquare Could avoid it by looking to pK^- final state, which mostly comes through excited $\Lambda {\rm s}$
- For B^0 we have about 10 times more events in $K^{*0}\mu\mu$ than $K_S\mu\mu$
- Scaling expect $\Lambda_b \to \Lambda \mu \mu$ would give large signal
- \blacksquare Probably will be less efficient as p/K separation is not as good as π/K
- Issues expected:
 - Nobody ever looked even to decays to $J/\psi pK^-$, so we should not start right with rare decays
 - Λ^* states are not that far apart and their parameters are often not well measured
 - \blacksquare Might require full 4-body final state analysis to disentangle different Λ^* states
- At LHCb we are working on this, but will have some delay compared to $\Lambda_b\to\Lambda\mu\mu$


$\Lambda_b \to \Lambda \mu \mu$ theory

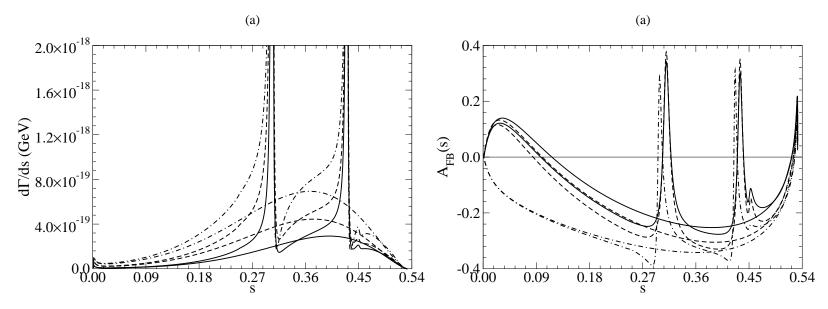

- Governed by $b \rightarrow s \mu \mu$ transition
- Theory starts from same quark level effective Hamiltonian as for B^0 decays
- Real difference is in form factors and perhaps to some extent Wilson coefficients
- My feeling is that form factors (hadronic part) for Λ_b baryons is much behind *b*-mesons
- Are there measurements on other Λ_b decays, which experimentalist can do in order to help theory to do calculations?
- In following I show few predictions, but certainly not exhaustive list
- What I'm showing is more as an example to bring up some points
- Unless we experimentally proof that Λ_b is produced unpolarized, it would be useful to keep production polarization in equations (reflects to angular distributions)

$\Lambda_b \to \Lambda \mu \mu \ \mathbf{d} \mathcal{B} / \mathbf{d} q^2$

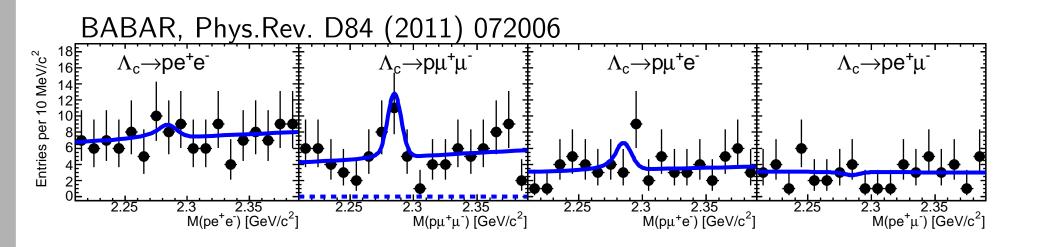
- As said, they start from same effective Hamiltonian, so can differ only in Wilson coefficients and form factors used
- One from JHEP 05 (2006) 001 is my own implementation of formulas from paper
- Real question, which one is best or whether their spread reflects our uncertainty
- **a** There seems to be also difference at low q^2 , also compared to B^0



$$\Lambda_b \to \Lambda \mu \mu \ A_{FB}$$


- A_{FB} is another quantity usually predicted
- Even comparing two predictions which would give most of the rate at high q^2 gives inconsistent prediction of size of A_{FB}
- While there are few more things predicted, this is not done generally
- Rarely one could find full 5D expression (q² plus 4 angles) to evaluate other possible quantities
- Rarely production polarization taken into account

Decays to \ensuremath{pK} final states


THE UNIVERSITY OF

- I'm aware of only one prediction by Mott, Roberts in Int.J.Mod.Phys. A27, 1250016
- It provides prediction for rates, differential rates and A_{FB}
- Does not give full 5D distributions
 - In principle we can do measurement without it, it is possible to work out angular distributions and measure amplitudes
 - When doing measurement we might need to take interferences between different states into account

Λ_c^+ baryons

- THE UNIVERSITY OF
- In SM basically same diagrams as Λ_b , just swapping up type quarks for down type quarks
- Should be interesting, I guess also in connection to recent results in charm sector
- Rate of $\Lambda_c \to p \mu^+ \mu^-$ is likely very small
- Best limit comes from Babar and is $< 4.4 \times 10^5$
- At LHCb we might be able to improve this (but I did not do any real calculation)
- Experimentally challenging because of Λ_c short lifetime

Questions and wishes

- $\hfill\blacksquare$ Example or two of how measurements on baryons provides more information than B^0
- Full 5D (q^2 , 4 angles) distributions
 - In experiment we can live without it, but it would make our life easier
- What experiments should measure
 - Specially if we cannot do full angular analysis with existing statistics
- What about q^2 bins, at this point, experiments use same binning as for B mesons
- How well we know hadronic physics for baryons?
- Are there any measurements LHCb could do to help to constrain hadronic physics and improve prediction