Opportunities and interplay beyond b→s II

11th September 2012 Mitesh Patel (Imperial College London)

- B_s lifetime difference
 - The lifetime difference in the B_s system has an impact on the expected $B(B_s{\to}\mu\mu)$:

```
(3.2\pm0.2)\times10^{-9} [arXiv:1012.1447] \rightarrow (3.5\pm0.2)\times10^{-9} [arXiv:1204.1737]
```

- Exactly this lifetime difference in used in the proposed $B_s \rightarrow \phi \gamma$ analysis [arXiv:0912.4179] to get sensitivity to right-handed photon contributions without requiring knowledge of the B flavour (experimentally, this measurement is extremely tough)
- Are there ways of exploiting this difference in other measurements?
- Does this lifetime difference have bearing on the B_s→φμμ analysis where LHCb should have the statistics to do an angular analysis?
- Are there other radiative measurements LHCb should look at? [signatures with a single γ , π^0 , K_S can be isolated experimentally]
- What can we learn from B_s→ττ? Should this be a priority?
- Is $B_s \rightarrow K^{+(*)} \mu \nu$ the measurement to get V_{ub} ? Or double ratio method?

- Is the contribution from "exchange" diagrams insignificant for all B⁰ decays?
 - <u>arXiv:1106.2711</u> predicts a large exchange contribution to B(B⁰→D⁰μμ) [and an very large B (~10⁻⁵) that LHCb should be able to test]

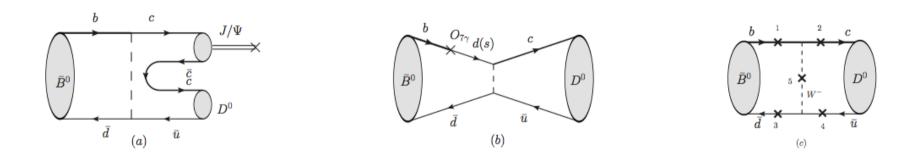


Figure 1: The possible diagrams for $B^0 \to D^0 \ell^+ \ell^-$, where the crosses stand for a virtual photon.

- Paper claims that "the weak annihilation contributions are usually ignored since they are regarded to be suppressed by $O(\Lambda_{OCD}/m_B)$ "
- A similar "exchange" process must contribute to $B^0 \to \pi^0 \mu\mu^- \to significant$ difference cf. naïve expectation from B ($B^+ \to \pi^+ \mu\mu^-$)?
- (While LHCb might just be able to see the $\pi^0\mu\mu$ mode, perhaps an upgraded experiment could measure the isospin asymmetry in π^+ , π^0 μμ as in B \to K $\mu\mu$ decays)

- Are there other ancillary measurements to help us with theory issues elsewhere
 - masses? matrix elements?
- Is B_s→K*⁰μμ/B⁰→K*⁰μμ of interest for V_{td}/V_{ts} determination?
 - Same form factor
 - f_d/f_s now known very well
- Other than $B^0 \rightarrow \mu\mu$, what would shopping list for $b \rightarrow d$ transitions be?
- B_c-decays
 - − LHCb sees 400 $B_c \rightarrow J/\psi \pi$ decays which have effective BF ($B(B_c \rightarrow J/\psi \pi) \times B(b \rightarrow B_c)$) ~10⁻⁴ [arXiv:1204.0079]
 - Given low b→B_c probability, unlikely any penguin decays will be visible with current phase of LHCb but are there other decays that are interesting?
 - e.g. B_c analogue of $B^0 \rightarrow D^{(*)} \tau \nu / B^0 \rightarrow D^{(*)} \mu \nu$ (where BaBar recently measured 2.7σ discrepancy <u>arXiv:1205.5442v1</u>) : $B_c \rightarrow J/\psi \tau \nu / B_c \rightarrow J/\psi \mu \nu$ Does have spectator c-quark make things different from the theory-side?