嘴

Experimental aspects and steps towards a full angular analysis
[from the perspective of an experimental physicist] T. Blake on behalf of the LHCb collaboration
$10^{\text {th }}$ September 2012

Outine Things that aren't in this talk

I won't talk at all about:

- $B^{0} \rightarrow K^{* 0} \ell \ell$ at low- q^{2} (and $\left.B^{0} \rightarrow K^{* 0} e^{-} e^{-}\right) \rightarrow$ Marie-Helene's talk.
- $\Lambda_{b} \rightarrow p K \mu^{+} \mu^{-}$and $\Lambda_{b} \rightarrow \Lambda^{0} \mu^{+} \mu^{-} \rightarrow$ Michal's talk.
- Isospin analysis \rightarrow Ulrik's talk.
- $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}, B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}, B^{0} \rightarrow \rho \mu^{+} \mu^{-}$etc.

I won't even talk much about LHCb's $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$results.
Instead focus on:

- Experimental issues that appear in the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$ angular analysis.
- Steps towards a full angular analysis.

Angular definition for $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$

- The decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$is self-tagging. The angular definition becomes important.
- The angular convention used by LHCb is not the same as the theory convention:
- It uses the same definition for $\cos \theta_{\ell}$ and $\cos \theta_{K}$ as

BaBar, Belle and CDF.

- It has a different definition of the ϕ angle from $\operatorname{CDF}\left(S_{9}\right.$ vs $\left.A_{9}\right)$.
- The angular basis is defined from the B^{0} and the basis for the \bar{B}^{0} obtained using CP.
- It is given explicitly in the following slides.

Angular definition: θ_{ℓ}

- For the $B^{0}\left(\bar{B}^{0}\right)$ decay, θ_{ℓ} is defined by the angle between the μ^{+} (μ^{-}) in the dimuon rest frame and the dimuon in the $B^{0}\left(\bar{B}^{0}\right)$ rest frame.
- Equivalently, the angle between the $\mu^{+}\left(\mu^{-}\right)$and the direction opposite that of the $B^{0}\left(\bar{B}^{0}\right)$ in the dimuon rest frame:

$$
\begin{aligned}
\cos \theta_{\ell} & =\frac{\vec{p}_{\mu^{-}}^{\mu \mu} \cdot \vec{p}_{\mu \mu}^{B}}{\left|\vec{p}_{\mu^{-}}^{\mu \mu}\right|\left|\vec{p}_{\mu \mu}^{B}\right|} \\
& =-\frac{\vec{p}_{\mu^{-}}^{\mu \mu} \cdot \vec{p}_{B}^{\mu \mu}}{\left|\vec{p}_{\mu^{-}}^{\mu \mu}\right|\left|\vec{p}_{B}^{\mu \mu}\right|}=-\frac{\vec{p}_{\mu^{-}}^{\mu \mu} \cdot \vec{p}_{K \pi}^{\mu \mu}}{\left|\vec{p}_{\mu^{-}}^{\mu \mu}\right|\left|\vec{p}_{K \pi}^{\mu \mu}\right|}
\end{aligned}
$$

NB This has the opposite sign convention to the "theory basis" \rightarrow a different sign convention for $A_{F B}$.

Angular definition: θ_{K}

- The angle θ_{K} is defined as the angle between the $K^{+}\left(K^{-}\right)$in the $K^{* 0}\left(\bar{K}^{* 0}\right)$ rest frame and the $K^{* 0}\left(\bar{K}^{* 0}\right)$ in the $B^{0}\left(\bar{B}^{0}\right)$ rest frame.

$$
\begin{aligned}
\cos \theta_{K} & =\frac{\vec{p}_{\mathrm{K}}^{K \pi} \cdot \vec{p}_{K \pi}^{B}}{\left|\vec{p}_{\mathrm{K}}^{K \pi}\right|\left|\vec{p}_{K \pi}^{B}\right|} \\
& =-\frac{\vec{p}_{\mathrm{K}}^{K \pi} \cdot \vec{p}_{B}^{K \pi}}{\left|\vec{p}_{\mathrm{K}}^{K \pi}\right|\left|\vec{p}_{B}^{K \pi}\right|}=-\frac{\vec{p}_{\mathrm{K}}^{K \pi} \cdot \vec{p}_{\mu \mu}^{K \pi}}{\left|\vec{p}_{\mathrm{K}}^{K \pi}\right|\left|\vec{p}_{\mu \mu}^{K \pi}\right|} .
\end{aligned}
$$

Angular definition: ϕ

- The angle ϕ is defined by the angle between the plane containing the $\mu^{+} \mu^{-}$and the plane containing the $K^{ \pm} \pi^{\mp}$ in the $B^{0}\left(\bar{B}^{0}\right)$ rest frame.
- For the B^{0} :

$$
\begin{aligned}
\cos \phi & =\vec{n}_{\mu^{+} \mu^{-}}^{B} \cdot \vec{n}_{\mathrm{K}^{+} \pi^{-}}^{B} \text { and } \\
\sin \phi & =\left(\vec{n}_{\mu^{+} \mu^{-}}^{B} \times \vec{n}_{\mathrm{K}^{+} \pi^{-}}^{B}\right) \cdot \frac{\vec{p}_{K^{+} \pi^{-}}^{B}}{\left|\vec{p}_{K^{+} \pi^{-}}^{B}\right|}
\end{aligned}
$$

- For the \bar{B}^{0} :

$$
\begin{aligned}
\cos \phi & =-\vec{n}_{\mu^{+} \mu^{-}}^{B} \cdot \vec{n}_{\mathrm{K}^{-} \pi^{+}}^{B}=\vec{n}_{\mu^{-} \mu^{+}}^{B} \cdot \vec{n}_{\mathrm{K}^{-} \pi^{+}}^{B} \text { and } \\
\sin \phi & =\left(\vec{n}_{\mu^{+} \mu^{-}}^{B} \times \vec{n}_{\mathrm{K}^{-} \pi^{+}}^{B}\right) \cdot \frac{\vec{p}_{K^{-} \pi^{+}}^{B}}{\left|\vec{p}_{K^{-} \pi^{+}}^{B}\right|}=-\left(\vec{n}_{\mu^{-} \mu^{+}}^{B} \times \vec{n}_{\mathrm{K}^{-} \pi^{+}}^{B}\right) \cdot \frac{\vec{p}_{K}^{B} \pi^{+}}{\left|\vec{p}_{K^{-} \pi^{+}}^{B}\right|}
\end{aligned}
$$

NB the sign convention between the B^{0} and \bar{B}^{0} is important and arises from the CP transformation. The behaviour is different for $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$decays, where $\mathrm{C}\left(K^{+}\right) \rightarrow K^{-}$.

Angular definition: ϕ

NB We can measure A_{9} in LHCb ϕ definition: by swapping the sign of ϕ for \bar{B}^{0} decays only (a la CDF). where:
$S_{9} \propto \sin \delta_{S} \cos \delta_{W}$
and
$A_{9} \propto \cos \delta_{S} \sin \delta_{W}$
and δ_{S} is a strong phase difference and δ_{W} a weak

(b) Φ for the B^{0} decay phase difference.

- For $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}, B_{s}^{0} \rightarrow \bar{B}_{s}^{0}$ corresponds to $\theta_{\ell} \rightarrow \pi-\theta_{\ell}$, $\theta_{K} \rightarrow \pi-\theta_{K}$ and $\phi \rightarrow-\phi$ in the angular distribution.

Angular convention and observables

- Following the convention of [Altmannshofer et. al. JHEP 01 (2009)], LHCb measures:

$$
\frac{\mathrm{d}^{4} \Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \boldsymbol{q}^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}+\frac{\mathrm{d}^{4} \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \boldsymbol{q}^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi} \sum_{i=0}^{9} S_{i} f_{i}\left(\cos \theta_{\ell}, \theta_{K}, \phi\right)
$$

- Where:

$$
S_{i}=\left(I\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]+I\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right]\right)
$$

- This only works in the absence of any production, detection or direct $\mathrm{CP}\left(\Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right] \neq \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right]\right)$asymmetry.
- In reality there is a small production asymmetry, $\mathcal{O}(1 \%)$, between B^{0} and \bar{B}^{0} that mixes S_{i} with A_{i} and we are only sensitive to direct CP asymmetries at the level of $5-10 \%$ (sets an upper limit on the mixing between A and S at 10\%).

Simplifying the angular distribution

- With limited statistics (in individual q^{2} bins) it is not yet possible to perform a full angular analysis of the $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$decay. Instead we try to reduce the number of parameters.
- Can either integrate over two of the angles to give:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} q^{2}} / \frac{d \Gamma}{d q^{2}}=\frac{3}{4} F_{L}\left(1-\cos ^{2} \theta_{\ell}\right)+\frac{3}{8}\left(1-F_{L}\right)\left(1+\cos ^{2} \theta_{\ell}\right)+A_{F B} \cos \theta_{\ell} \\
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} \cos \theta_{K} \mathrm{~d} q^{2}} / \frac{d \Gamma}{d q^{2}}=\frac{3}{2} F_{L} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right) \\
\frac{\mathrm{d}^{2} \Gamma}{\mathrm{~d} \phi \mathrm{~d} q^{2}} / \frac{d \Gamma}{d q^{2}}=\frac{1}{2 \pi}\left[1+S_{3} \cos 2 \phi+A_{l m} \sin 2 \phi\right]
\end{gathered}
$$

NB Can replace $S_{3}=\frac{1}{2}\left(1-F_{L}\right) A_{T}^{2}$ throughout these slides.

Simplifying the angular distribution

Or try to fold the angular distribution to remove the terms. For example "folding" ϕ such that:

$$
\hat{\phi}= \begin{cases}\phi+\pi & \text { if } \phi<0 \\ \phi & \text { otherwise }\end{cases}
$$

- Giving:

$$
\begin{aligned}
\frac{\mathrm{d}^{4} \Gamma}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \hat{\phi} \mathrm{~d} q^{2}} / \frac{d \Gamma}{d q^{2}}=\frac{9}{16 \pi}[& F_{L} \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)- \\
& F_{L} \cos ^{2} \theta_{K}\left(2 \cos ^{2} \theta_{\ell}-1\right)+ \\
& \frac{1}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)\left(2 \cos ^{2} \theta_{\ell}-1\right)+ \\
& S_{3}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \cos 2 \hat{\phi}+ \\
& \frac{4}{3} A_{F B}\left(1-\cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+ \\
& \left.S_{9}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \sin 2 \hat{\phi}\right]
\end{aligned}
$$

Simplifying the angular distribution

- Can also try other foldings to have access to the other terms in the angular expression.
e.g. for S_{5} :

$$
\begin{aligned}
& \hat{\phi}=\left\{\begin{aligned}
-\phi & \text { if } \phi<0 \\
\phi & \text { otherwise }
\end{aligned} \text { and } \hat{\theta}_{\ell}= \begin{cases}\pi-\theta_{\ell} & \text { if } \theta_{\ell}>\frac{\pi}{2} \\
\theta_{\ell} & \text { otherwise }\end{cases} \right. \\
& \frac{\mathrm{d}^{4} \Gamma}{\mathrm{~d} \cos \hat{\theta}_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \hat{\phi} \mathrm{~d} q^{2}} / \frac{d \Gamma}{d q^{2}} \propto {\left[\frac{3}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)+F_{L} \cos ^{2} \theta_{K}\right.} \\
& \frac{1}{4}\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)\left(2 \cos ^{2} \hat{\theta}_{\ell}-1\right)- \\
& F_{L} \cos ^{2} \theta_{K}\left(2 \cos ^{2} \hat{\theta}_{\ell}-1\right)+ \\
& S_{3}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \hat{\theta}_{\ell}\right) \cos 2 \hat{\phi}+ \\
&\left.S_{5}\left(2 \cos ^{2} \theta_{K}-1\right) \sin \hat{\theta}_{\ell} \cos \hat{\phi}\right]
\end{aligned}
$$

What do we mean by observables?

- Due to the limited statistics we perform measurements in wide q^{2} regions, the observables that we measure are rate averages of the physics quantities over the q^{2} region:
e.g.

$$
<F_{L}>=\frac{\left[\int_{q_{\min }^{2}}^{q_{\max }^{2}} F_{L}\left(q^{2}\right) \frac{d \Gamma}{d q^{2}} d q^{2}\right]}{\left[\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma q^{2}}{d q^{2}}\right]}
$$

- The situation gets more complicated if there are products of two (or more) q^{2} dependent terms in the angular expression.
- In general:

$$
<A_{\perp L}\left(q^{2}\right) A_{\| L}^{*}\left(q^{2}\right)>\neq<A_{\perp L}\left(q^{2}\right)><A_{\| L}^{*}\left(q^{2}\right)>
$$

unless one of the amplitudes is constant.

What do we mean by observables?

- This has implications for performing the full angular fit.
- Do we need to take into account the q^{2} dependence to get unbiased results?
- What form should we use for the q^{2} dependence?

NB For the transverse observables we can write:

$$
<\left(1-F_{L}\left(q^{2}\right)\right) A_{T}^{2}\left(q^{2}\right)>=<\left(1-F_{L}\left(q^{2}\right)><\tilde{A}_{T}^{2}>\right.
$$

where:

$$
<\tilde{A}_{T}^{2}>=\frac{\left[\int_{q_{\min }^{2}}^{q_{\max }^{2}} A_{T}^{2} \frac{d \Gamma}{d q^{2}}\left(1-F_{L}\left(q^{2}\right)\right) d q^{2}\right]}{\left[\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma}{d q^{2}}\left(1-F_{L}\left(q^{2}\right)\right) d q^{2}\right]}
$$

i.e. a transverse rate-average (which should again be a theoretically "clean" observable [Descotes-Genon et al arXiv:1207.2753]).

Can we neglect terms in $4 m_{\mu}^{2} / q^{2}$?

- When writing down the angular expressions we have assumed that:

$$
4 m_{\mu}^{2} \ll q^{2}
$$

This assumption clearly breaks down for $q^{2}<1 \mathrm{GeV}^{2} / c^{4}$.

- Marie-Helene will go into more detail, but this has several consequences for the angular analysis and the interpretation of experimental results in the $4 m_{\mu}^{2}<q^{2}<2 \mathrm{GeV}^{2} / c^{4}$ mass window.
- Importantly:

$$
I_{1}^{c} \neq-I_{2}^{c} \text { and } I_{1}^{s} \neq 3 I_{2}^{s}
$$

- In a SM simulation, the bias on the observables from neglecting these terms is $\mathcal{O}(20 \%)$.
NB As $q^{2} \rightarrow 4 m_{\mu}^{2}$, the angular distribution becomes isotropic and sensitivity to the "physics" parameters is completely lost.

S-wave interference

- The angular distribution is based on a narrow width approximation of the $K^{* 0}$. In reality we consider a $200 \mathrm{MeV} / c^{2} m_{K^{+} \pi^{-}}$window.
- Can also have contributions from the tails of higher $K^{+} \pi^{-}$ resonances, e.g. $K_{0}^{* 0}(1430)$, or non-resosant S-wave $K^{+} \pi^{-}$ (supported by data from LASS).
- Interference between a P- and S-wave $K^{+} \pi^{-}$system is seen in $B^{0} \rightarrow K^{+} \pi^{-} J / \psi$ data at the B-factories.
[BaBar PRD 76 (2007)]

[BaBar PRD 71 (2005)]

S-wave intereference

- Based on [Lü \& Wang PRD 85 (2012)], introduce a S-wave $K^{+} \pi^{-}$by replacing:

$$
A_{0 L, R}^{J=1} \cos \theta_{K} \rightarrow \frac{1}{\sqrt{3}} A_{0 L, R}^{0}+A_{0 L, R}^{1} \cos \theta_{K}
$$

- Should we expect $A_{0 L, R}^{0}$ and $A_{0 L, R}^{1}$ to have similar (the same) q^{2} dependence?
- Do we expect a large S-wave contribution where F_{L} is largest?
- To simplify the discussion, define:

$$
F_{S}=\frac{\left|A_{0}^{0}\right|^{2}}{\Gamma_{\text {tot. }}} \text { and } A_{S L, R} \propto\left|A_{0 L, R}^{0}\right|\left|A_{0 L, R}^{1}\right| \cos \delta_{S L, R}
$$

- In $B^{0} \rightarrow K^{+} \pi^{-} J / \psi, F_{S} \sim 7-8 \%$ and the interference term is $\sim 20 \%$.

S-wave interference

- The impact of the S -wave interference is felt in two places:

1. It dilutes $F_{L}, A_{F B}, A_{I m}$ and S_{3}.
2. It introduces new terms into the angular expression (F_{S} and A_{S}).

Giving:

$$
\begin{aligned}
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{\ell} d \hat{\phi}} / \frac{d \Gamma}{d q^{2}}=\frac{9}{16 \pi}[& \frac{2}{3} F_{S}\left(1-\cos ^{2} \theta_{\ell}\right)+\frac{4}{3} A_{S} \cos \theta_{K}\left(1-\cos ^{2} \theta_{\ell}\right)+ \\
& 2\left(1-F_{S}\right) F_{L} \cos ^{2} \theta_{K}\left(1-\cos ^{2} \theta_{\ell}\right)+ \\
& \frac{1}{2}\left(1-F_{S}\right)\left(1-F_{L}\right)\left(1-\cos ^{2} \theta_{K}\right)\left(1+\cos ^{2} \theta_{\ell}\right)+ \\
& \left(1-F_{S}\right) S_{3}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \cos 2 \hat{\phi}+ \\
& \frac{4}{3}\left(1-F_{S}\right) A_{F B}\left(1-\cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+ \\
& \left.\left(1-F_{S}\right) A_{I m}\left(1-\cos ^{2} \theta_{K}\right)\left(1-\cos ^{2} \theta_{\ell}\right) \sin 2 \hat{\phi}\right] .
\end{aligned}
$$

it will also modify the angular distribution associated to I_{4}, I_{5}, I_{7} and I_{8} in a full angular analysis.

S-wave interference

$A_{F B}=-0.18, F_{L}=0.66, A_{T}^{2}=0.3, A_{I m}=0.07$ and $F_{S}=0.07$ with 20% interference term.

- With current statistical precision an 8% S-wave contribution gives a significant experimental bias.
- We do not yet have enough statistics to directly measure F_{S} in the data in a $200 \mathrm{MeV} / \mathrm{c}^{2}$ mass window.

Fit stability and clean observables from a practical perspective

- When we perform a likelihood fit to the distribution of events we see in the data we are sensitive to the relative contribution from the different $f_{i}\left(\cos \theta_{\ell}, \cos \theta_{K}, \phi\right)$ terms in:

$$
\frac{\mathrm{d}^{4} \Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \boldsymbol{q}^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}+\frac{\mathrm{d}^{4} \Gamma\left[\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \boldsymbol{q}^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi} \sum_{i=0}^{9} S_{i} f_{i}\left(\cos \theta_{\ell}, \theta_{K}, \phi\right)
$$

\rightarrow From an experimental perspective, S_{i} are a natural choice of observable.

- The transverse variables:
- A_{T}^{2} [Krüger \& Mattias PRD 71 (2005)]
- $A_{T}^{R e}$ and $A_{T}^{l m}$ [Becirevic \& Schneider arXiv:1106.3283]
appear in combination with $1-F_{L}$ and can be correlated to F_{L} in the fit. Moreover they become ill defined with $F_{L} \rightarrow 1$.
- The transverse variables do however have some nice experimental benefits...

Boundaries in parameter space

- We talk about $F_{L}, S_{3}\left(A_{T}^{2}\right)$, $A_{F B}\left(A_{T}^{R e}\right)$ and $A_{l m}\left(A_{T}^{I m}\right)$ being observables, but in reality they are not independent. They depend on the same transversity amplitudes.

e.g. For $A_{F B}$ to be large, $A_{\|}$and A_{\perp} must be large compared to $A_{0} \rightarrow F_{L}$ must be small.
- For the angular distribution to remain + ve definite:

$$
A_{F B} \leq \frac{3}{4}\left(1-F_{L}\right) \quad, \quad A_{l m} \leq \frac{1}{2}\left(1-F_{L}\right) \quad \text { and } \quad S_{3} \leq \frac{1}{2}\left(1-F_{L}\right)
$$

NB these are the same transformations needed to go to the transverse variables $\left(A_{T}^{R e}, A_{T}^{l m}\right.$ and $\left.A_{T}^{2}\right)$.

$A_{T}^{R e}$ as an illustration of boundary effects

- In the SM A_{T}^{2}, S_{9} and $A_{9} \sim 0$ and boundary issues in the fit are limited to $A_{F B}: F_{L}$.
- To illustrate possible problems look at $A_{T}^{R e}$ [Becirevic \& Schneider arXiv:1106.3283].
- In the SM $A_{T}^{R e}$ becomes maximal around $1-2 \mathrm{GeV}^{2} / c^{4}$ and again at higher q^{2}.

$\therefore \mathrm{SM}$ favours values of $A_{F B}$ that sit on the edge of the allowed parameter space where the numerical approaches adopted by MINUIT are least stable.

The meaning of experimental errors

- The confidence intervals quoted on the angular observables are constructed treating the other angular observables as nuisance parameters.
- What does this mean in practice?
- It tells you, for example, that $A_{F B}$ is in the range $X X<A_{F B}<Y Y$ at 68% confidence level without making any inference on the value of F_{L}.
- The intervals may not and in practice are not simultaneously valid at this confidence level.
- To put it more simply, due to correlations and boundary effects, you can not recreate the full likelihood from the confidence intervals on the individual parameters.
- The correlations are important for global fits, so how should we make this information available?
- It's complicated now with 4 parameters, but will get much worse when we move to a full angular analysis.

Zero crossing point of $A_{F B}$

- The LHCb zero-crossing measurement does not come from an angular analysis. Instead we fit the q^{2} distribution of forward and backward going events.

$$
A_{F B} \quad q_{0}^{2}=4.9_{-1.3}^{+1.1} \mathrm{GeV}^{2} / c^{4}
$$

- Can apply the same technique to other observables that can be measured using counting experiments, e.g. S_{5} [Bharucha \& Reece, Eur. Phys. J. C69 (2010)]
- From SM MC simulation, expect a similar precision on the zero crossing point of S_{5}.

Looking to the future (at LHCb)

- Preliminary result from LHCb based on ~ 900 candidates in $1 \mathrm{fb}^{-1}$.
\rightarrow Updated to include $A_{9}, A_{T}^{R e}$ and $A_{T}^{l m}$.
- Expect a combined $2011+2012$ data set of $3 \mathrm{fb}^{-1}$ with ~ 3000 signal candidates (assuming no analysis improvements).
- At the end of the year we go into LS1 of the LHC.

Looking to the future (at LHCb)

Yields in $1 \mathrm{fb}^{-1}$:

\rightarrow expect ~ 540 candidates in the $1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}$ range in the $2011+2012$ data sample.

Towards a full angular analysis and open questions

- With the combined data set we start to have enough data to contemplate a full angular fit but:
- What variables do we fit for?
- Transversity amplitudes? S_{i} 's and A_{i} 's?

$$
P_{i} \text { 's? [Descotes-Genon et al arXiv:1207.2753] }
$$

We already know that we expect to see problems fitting for the S_{i} 's and A_{i} 's due to correlations between the parameters.

- Do we need to take into account the q^{2} dependence or can we bin in q^{2} ?
- How do we deal with the S -wave interference in a full angular analysis?
- Do we separate B^{0} and \bar{B}^{0} in the fit?
- Could we (and should we) consider fitting for the Wilson coefficients directly at low q^{2} ?

Towards a full angular analysis and open questions

- If we do not parameterise the q^{2} dependence, should we consider changing the q^{2} binning that we currently use?
- Are we better off binning in hadronic re-coil at high q^{2} ?
- We now have a mess of naming conventions for different observables:
- S_{i} and $A_{i}, A_{T}^{2,3,4}, A_{T}^{R e}$ and $A_{T}^{l m}, P_{i}$,

$$
H_{T}^{(1,2,3)} \text { [Bobeth et al arXiv:1006.5013]]. }
$$

It could get even worse. For example does it make sense to talk about CP averages or asymmetries of the P_{i} 's? If so what should we call them ...?

Discussion

