Theory status of $B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}$ [and $B \rightarrow K^{*} \gamma$] (- large hadronic recoil - low $q^{2}-$)

Thorsten Feldmann

Workshop on
The Physics Reach of Rare and Exclusive B Decays 10-11 September 2012, University of Sussex

Naively Factorizing Contributions (\rightarrow Form Factors)

- advantage of helicity-based form factors

QCD Factorization of Hadronic Operators

- charm-loop effects
- light-quark loops

QCDF at NLO

- vertex corrections
- specator scattering and annihilation
- power corrections

Conclusions

Naively Factorizing Contributions $(\rightarrow$ Form Factors)

Semi-leptonic and electromagnetic Operators

$$
\mathcal{O}_{7}=-\frac{g_{\mathrm{em}} m_{b}}{8 \pi^{2}}\left(\overline{\mathrm{~s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b\right) F_{\mu \nu}, \quad \mathcal{O}_{9,10}=\frac{\alpha_{\mathrm{em}}}{2 \pi}\left(\bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)(\bar{\ell} \ell)_{V, A}
$$

("trivial") Factorization:

$$
\begin{aligned}
& \left\langle\bar{K}^{(*)} \ell \ell\right|(\bar{s} b)_{V-A}(\bar{\ell} \ell)_{V, A}|\bar{B}\rangle \\
= & \left\langle\bar{K}^{(*)}\right| \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b|\bar{B}\rangle \times\langle\ell|(\bar{\ell} \ell)_{V, A}|0\rangle+\mathcal{O}\left(\alpha_{\mathrm{em}}\right)
\end{aligned}
$$

and similar for \mathcal{O}_{7}.

- Non-perturbative Input: Hadronic Form Factors
- At which level of precision do (non-factorizable) electromagnetic effects become important?

Convenient Definition ("helicity-based"):

$$
\begin{aligned}
& \mathcal{A}_{V, \sigma}\left(q^{2}\right)=\sqrt{\frac{q^{2}}{\lambda}} \varepsilon_{\sigma}^{* \mu}(q)\langle\bar{K}| \bar{s} \gamma_{\mu} b|\bar{B}\rangle \\
& \mathcal{A}_{T, \sigma}\left(q^{2}\right)=(-i) \sqrt{\frac{1}{\lambda}} \varepsilon_{\sigma}^{* \mu}(q)\langle\bar{K}| \bar{s} \sigma_{\mu \nu} q^{\nu} b|\bar{B}\rangle
\end{aligned}
$$

- $\varepsilon_{\sigma}(q)$: transverse, longitudinal, or time-like polarization vectors,

$$
\sigma=\{ \pm ; 0 ; t\} \text { or }\{1,2 ; 0 ; t\}
$$

- normalization: $\lambda=\left((M-m)^{2}-q^{2}\right)\left((M-m)^{2}-q^{2}\right)$

$$
A_{V, 0} \equiv f_{+}, \quad A_{V, t} \equiv \frac{M^{2}-m^{2}}{\sqrt{\lambda}} f_{0}, \quad A_{T, 0} \equiv \frac{\sqrt{q^{2}}}{M+m} f_{T}
$$

Similar for $B \rightarrow K^{*}$:

$$
\begin{gathered}
B_{V, 0} \propto A_{2}-\frac{(M+m)^{2}\left(M^{2}-m^{2}-q^{2}\right)}{\lambda} A_{1} \\
B_{T, 0} \propto T_{3}-\frac{\left(M^{2}-m^{2}\right)\left(M^{2}+3 m^{2}-q^{2}\right)}{\lambda} T_{2} \\
B_{V, t} \propto A_{0}, \quad B_{V, 1} \propto V, \quad B_{V, 2} \propto A_{1}, \quad B_{T, 1} \propto T_{1}, \quad B_{T, 2} \propto T_{2}
\end{gathered}
$$

Non-perturbative calculations (lattice, sum rules) should directly determine the linear combinations in
$B_{V, 0}$ and $B_{T, 0} \quad$ instead of $\quad A_{2}$ and $T_{3} \quad$!

Advantage of Helicity Form Factors

- definite spin-parity / diagonalization of unitarity relations (\rightarrow simpler expressions for unitarity bounds)
- simple form of HQET/SCET symmetry relations for small/large recoil
- relatively simple expressions for observables in factorization approximation, e.g.

$$
\begin{aligned}
\frac{d \Gamma\left[B \rightarrow K \ell^{+} \ell^{-}\right]}{d q^{2}} & \left.\propto C_{10}\right|^{2}\left(A_{V, 0}\right)^{2}+\left|C_{9} A_{V, 0}+\frac{2 m_{b} C_{7}^{\mathrm{eff}}}{\sqrt{q^{2}}} A_{T, 0}\right|^{2} \\
& \xrightarrow{\text { SCET }}\left(\left|C_{10}\right|^{2}+\left|C_{9}+\frac{2 m_{b} C_{7}^{\mathrm{eff}}}{M}\right|^{2}\right)\left(A_{V, 0}\right)^{2}
\end{aligned}
$$

similar for transverse/longitudinal rate and FB asymmetry

- in $B \rightarrow K^{*} \ell^{+} \ell^{-}$
[Bharucha/TF/Wick 10]
- in $\Lambda_{b} \rightarrow \wedge \ell^{+} \ell^{-}$
[TF/Yip 2011]
- QCDF to $\mathcal{O}\left(\alpha_{s}\right) \quad$ [Beneke/TF 0 o]
- Radiative corrections to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ and SCET resummation
[Beneke/Kiyo/Yang 04, Becher/Hill et al. 04, Beneke/Yang 05]

- Two FF-relations do not receive radiative corrections.

ニニ QCD-SR results for $B \rightarrow \rho \quad$ [Ball/Zwicky 05], deviations of order 5\% (from power corrections)

- QCDF to $\mathcal{O}\left(\alpha_{s}\right) \quad$ [Beneke/TF 00]
- Radiative corrections to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ and SCET resummation
[Beneke/Kiyo/Yang 04, Becher/Hill et al. 04, Beneke/Yang 05]

- Two FF-relations do not receive radiative corrections.

ニニ QCD-SR results for $B \rightarrow \rho \quad$ [Ball/Zwicky 05], deviations of order 5\% (from power corrections)

- Relation between $B_{T, 0}$ and $B_{V, 0}$ receives large spectator-scattering corrections, up to 40% (depending on B-meson LCDA)
(--: without NLO+LL corrections to spectator term)
(--: without any spectator corrections)
- - QCD-SR estimate rather uncertain (power corrections, cancellations?)
- QCDF to $\mathcal{O}\left(\alpha_{s}\right) \quad$ [Beneke/TF 00]
- Radiative corrections to $\mathcal{O}\left(\alpha_{s}^{2}\right)$ and SCET resummation
[Beneke/Kiyo/Yang 04, Becher/Hill et al. 04, Beneke/Yang 05]

- Two FF-relations do not receive radiative corrections.

ニニ QCD-SR results for $B \rightarrow \rho \quad$ [Ball/Zwicky 05], deviations of order 5\% (from power corrections)

- Relation between $B_{T, 0}$ and $B_{V, 0}$ receives large spectator-scattering corrections, up to 40% (depending on B-meson LCDA)
(--: without NLO+LL corrections to spectator term)
(--: without any spectator corrections)
- - QCD-SR estimate rather uncertain (power corrections, cancellations?)
- Relevant FF ratio for FB-Asymmetry receives $\mathcal{O}(10 \%)$ corrections (!) (dependent on LCDAs for heavy and light meson)

Lessons from Leading Approximation

Basis for Global SM Fit or NP Constraints:

- Normalization and shape of differential decay rates proportional to

$$
\left|V_{t s} V_{t b}^{*}\right|^{2} \quad \text { and } \quad(\text { SCET form factors })^{2}
$$

- Certain decay asymmetries are sensitive to

$$
\frac{2 m_{b} C_{7}^{\mathrm{eff}}}{M}, \quad C_{9}, \quad C_{10} \quad \text { and/or } \quad \text { form-factor Ratios }
$$

Lessons from Leading Approximation

Basis for Global SM Fit or NP Constraints:

- Normalization and shape of differential decay rates proportional to

$$
\left|V_{t s} V_{t b}^{*}\right|^{2} \quad \text { and } \quad(\text { SCET form factors })^{2}
$$

- Certain decay asymmetries are sensitive to

$$
\frac{2 m_{b} C_{7}^{\mathrm{eff}}}{M}, \quad C_{9}, \quad C_{10} \quad \text { and/or } \quad \text { form-factor Ratios }
$$

- How well do we know the hadronic form factors, in particular for decays into unstable particles like K^{*} or ρ
\rightarrow Also use experimental data to find best-fitting values for FFs !
- Precision of SCET symmetry relations and estimates for its corrections ?

Lessons from Leading Approximation

Basis for Global SM Fit or NP Constraints:

- Normalization and shape of differential decay rates proportional to

$$
\left|V_{t s} V_{t b}^{*}\right|^{2} \quad \text { and } \quad(\text { SCET form factors })^{2}
$$

- Certain decay asymmetries are sensitive to

$$
\frac{2 m_{b} C_{7}^{\mathrm{eff}}}{M}, \quad C_{9}, \quad C_{10} \quad \text { and/or } \quad \text { form-factor Ratios }
$$

- How well do we know the hadronic form factors, in particular for decays into unstable particles like K^{*} or ρ?
\rightarrow Also use experimental data to find best-fitting values for FFs !
- Precision of SCET symmetry relations and estimates for its corrections ?
- How do (non-factorizable) effects from hadronic operators affect
- Theoretical predictions for decay rates and asymmetries
- Modelling of $B \rightarrow(K \pi) \ell \ell$ (non-resonant) background

QCDF of Hadronic Operators

- Perturbative Analysis, $\alpha_{s} \ll 1$
- hard momentum modes $\mu \sim m_{b}$ in vertex corrections
- hard-collinear modes $\mu \sim \sqrt{m_{b} \Lambda}$ in spectator scattering
- soft and collinear modes in B-meson and kaon LCDAs.
- Dominated (?) by leading power in $1 / m_{b}$ and $1 / E_{K}$
- non-factorizable contributions (at sub-leading power)

Additional Contributions from $\mathcal{O}_{1-6}, \mathcal{O}_{8}^{g}+$ Photon Radiation (in the SM)

$$
C_{9}+\frac{2 m_{b} C_{7}^{\text {eff }}}{\sqrt{q^{2}}} \frac{A_{T, 0}}{A_{V, 0}}+\ldots \longrightarrow \mathcal{C}_{9}^{(K)}\left(q^{2}\right) \equiv C_{9}+\frac{2 m_{b}}{M} \frac{\mathcal{T}^{(K)}\left(q^{2}\right)}{A_{V, 0}\left(q^{2}\right)}
$$

- All information contained in q^{2}-dependent functions $\mathcal{T}\left(q^{2}\right)$, encoding the hadronic matrix element $\left\langle\bar{K}^{(*)} \gamma^{*}\right| H_{\text {eff }}|\bar{B}\rangle$.

Additional Contributions from $\mathcal{O}_{1-6}, \mathcal{O}_{8}^{g}+$ Photon Radiation (in the SM)

$$
\begin{aligned}
& C_{9}+\frac{2 m_{b} C_{7}^{\text {eff }}}{\sqrt{q^{2}}} \frac{A_{T, 0}}{A_{V, 0}}+\ldots \rightarrow \mathcal{C}_{9}^{(K)}\left(q^{2}\right) \equiv C_{9}+\frac{2 m_{b}}{M} \frac{\mathcal{T}^{(K)}\left(q^{2}\right)}{A_{V, 0}\left(q^{2}\right)} \\
& C_{9}+\frac{2 m_{b} C_{7}^{\text {eff }}}{\sqrt{q^{2}}} \frac{B_{T, 0}}{B_{V, 0}}+\ldots \longrightarrow \mathcal{C}_{9 \|}^{\left(K^{*}\right)}\left(q^{2}\right) \equiv C_{9}-\frac{2 m_{b}}{M} \frac{\mathcal{T}_{\|}^{\left(K^{*}\right)}\left(q^{2}\right)}{B_{V, 0}\left(q^{2}\right)} \\
& C_{9}+\frac{2 m_{b} C_{7}^{\text {eff }}}{\sqrt{q^{2}}} \frac{B_{T, i}}{B_{V, i}}+\ldots \longrightarrow C_{9 \perp}^{\left(K^{*}\right)}\left(q^{2}\right) \equiv C_{9}+\frac{2 m_{b} M}{q^{2}} \frac{\mathcal{T}_{\perp}^{\left(K^{*}\right)}\left(q^{2}\right)}{B_{V, i}\left(q^{2}\right)}
\end{aligned}
$$

- All information contained in q^{2}-dependent functions $\mathcal{T}\left(q^{2}\right)$, encoding the hadronic matrix element $\left\langle\bar{K}^{(*)} \gamma^{*}\right| H_{\text {eff }}|\bar{B}\rangle$.
- In the large recoil limit, $\mathcal{T}_{\perp, 1}=\mathcal{T}_{\perp, 2} \equiv \mathcal{T}_{\perp}$.
- For $B \rightarrow K^{*} \gamma$ and FBA , only \mathcal{T}_{\perp} contributes.

Contributions to $\mathcal{T}_{x}\left(q^{2}\right)$ at zeroth order in QCDF

(a) Photon from \mathcal{O}_{7}, (spectator quark not drawn) included in Naive Factorization

Contributions to $\mathcal{T}_{x}\left(q^{2}\right)$ at zero ${ }^{\text {th }}$ order in QCDF

(a)

(b)

(c)
(b) Photon from Quark Loops with hadronic operators \mathcal{O}_{1-6}
(spectator quark not drawn)

$$
C_{7} \rightarrow C_{7}^{\mathrm{eff}}, \quad C_{9} \rightarrow C_{9}+Y\left(q^{2}\right)
$$

- Generates imaginary part for $q^{2} \geq 4 m_{q}^{2}$
- Perturbative description valid near resonances

Contributions to $\mathcal{T}_{x}\left(q^{2}\right)$ at zero ${ }^{\text {th }}$ order in QCDF

(a)

(b)

(c)
(c) Photon from Annihilation Topologies with \mathcal{O}_{1-6}

- enters with small penguin coefficients $C_{3,4}$ (or with $C_{1,2}$ and small CKM factor)
- leading contribution if photon radiated from light quark in B-meson

$$
\text { proportional to } \quad \int_{0}^{\infty} \frac{d \omega}{\omega-q^{2} / M-i \epsilon} \phi_{B}^{-}(\omega) \quad \rightarrow \quad \text { imaginary part (!) }
$$

- sub-leading terms important for isospin asymmetries

Threshold-dependence in function $Y\left(q^{2}\right)$

$$
\begin{aligned}
Y(s)= & h\left(s, m_{c}\right)\left(3 \bar{C}_{1}+\bar{C}_{2}+3 \bar{C}_{3}+\bar{C}_{4}+3 \bar{C}_{5}+\bar{C}_{6}\right)-\frac{1}{2} h(s, 0)\left(\bar{C}_{3}+3 \bar{C}_{4}\right) \\
& -\frac{1}{2} h\left(s, m_{b}\right)\left(4\left(\bar{C}_{3}+\bar{C}_{4}\right)+3 \bar{C}_{5}+\bar{C}_{6}\right)+\frac{2}{9}\left(\frac{2}{3} \bar{C}_{3}+2 \bar{C}_{4}+\frac{16}{3} \bar{C}_{5}\right)
\end{aligned}
$$

Charm Loop - Function $h\left(s=q^{2}, m_{c}\right)$

enters with large Wilson coefficients $C_{1,2}$

- Sensitivity to $m_{c}=\{1.25,1.35,1.45\} \mathrm{GeV}$
- Perturbatively stable, IF $q^{2}<4 m_{c}^{2}$
- Irreducible error around $q^{2} \gtrsim 6 \mathrm{GeV}^{2}$
\rightarrow Estimate of systematic error in QCDF due to charm resonances below threshold
— need for model-dependent "improvement" ? —

Threshold-dependence in function $Y\left(q^{2}\right)$

$$
\begin{aligned}
Y(s)= & h\left(s, m_{c}\right)\left(3 \bar{C}_{1}+\bar{C}_{2}+3 \bar{C}_{3}+\bar{C}_{4}+3 \bar{C}_{5}+\bar{C}_{6}\right)-\frac{1}{2} h(s, 0)\left(\bar{C}_{3}+3 \bar{C}_{4}\right) \\
& -\frac{1}{2} h\left(s, m_{b}\right)\left(4\left(\bar{C}_{3}+\bar{C}_{4}\right)+3 \bar{C}_{5}+\bar{C}_{6}\right)+\frac{2}{9}\left(\frac{2}{3} \bar{C}_{3}+2 \bar{C}_{4}+\frac{16}{3} \bar{C}_{5}\right)
\end{aligned}
$$

Light-Quark Loop - Function $h\left(s=q^{2}, m_{q} \rightarrow 0\right)$

enters with small penguin coefficients $C_{3,4}$ (or with $C_{1,2}$ and small CKM factor)

- Sensitivity to $m_{q}=\{0.003,0.3,0.4\} \mathrm{GeV}$
- Perturbatively stable, IF $q^{2} \gg 1 \mathrm{GeV}^{2}$
- Irreducible error around $q^{2} \lesssim 2 \mathrm{GeV}^{2}$
(?) Estimate of systematic error in QCDF due to light resonances above threshold
— in any case sub-leading for $B \rightarrow K^{(*)}$ — error not included in [Beneke/TF/Seidel]

Threshold-dependence in function $Y\left(q^{2}\right)$

$$
\begin{aligned}
Y(s)= & h\left(s, m_{c}\right)\left(3 \bar{C}_{1}+\bar{C}_{2}+3 \bar{C}_{3}+\bar{C}_{4}+3 \bar{C}_{5}+\bar{C}_{6}\right)-\frac{1}{2} h(s, 0)\left(\bar{C}_{3}+3 \bar{C}_{4}\right) \\
& -\frac{1}{2} h\left(s, m_{b}\right)\left(4\left(\bar{C}_{3}+\bar{C}_{4}\right)+3 \bar{C}_{5}+\bar{C}_{6}\right)+\frac{2}{9}\left(\frac{2}{3} \bar{C}_{3}+2 \bar{C}_{4}+\frac{16}{3} \bar{C}_{5}\right)
\end{aligned}
$$

Light-Quark Loop - Function $h\left(s=q^{2}, m_{q} \rightarrow 0\right)$

enters with small penguin coefficients $C_{3,4}$ (or with $C_{1,2}$ and small CKM factor)

- Sensitivity to $m_{q}=\{0.003,0.3,0.4\} \mathrm{GeV}$
- Perturbatively stable, IF $q^{2} \gg 1 \mathrm{GeV}^{2}$
- Irreducible around $q^{2} \lesssim 2 \mathrm{GeV}^{2}$
(?) Estimate of systematic error in QCDF vs. Shifman-like model for light resonances
- for illustration only -

IR-Sensitivity from B-Meson LCDA

$$
f\left(q^{2}\right) \equiv \int_{0}^{\infty} d \omega \frac{\phi_{B}^{(-)}(\omega)}{\omega-q^{2} / M+m_{q}^{2} / M-i \epsilon}, \quad \phi_{B}^{(-)}(\omega)=\frac{e^{-\omega / \omega_{0}}}{\omega_{0}}
$$

$f(s)$ enters annihilation and hard-scattering diagrams

- Sensitivity to $m_{q}=\{0.003,0.3,0.4\} \mathrm{GeV}$
- Perturbatively stable for $q^{2} \gg 1 \mathrm{GeV}^{2}$
- Small uncertainty for $q^{2}<2 \mathrm{GeV}^{2}$
\rightarrow Systematic error in QCDF

IR-Sensitivity from B-Meson LCDA

$$
f\left(q^{2}\right) \equiv \int_{0}^{\infty} d \omega \frac{\phi_{B}^{(-)}(\omega)}{\omega-q^{2} / M+m_{q}^{2} / M-i \epsilon}, \quad \phi_{B}^{(-)}(\omega)=\frac{e^{-\omega / \omega_{0}}}{\omega_{0}}
$$

$f(s)$ enters annihilation and hard-scattering diagrams

- Sensitivity to $m_{q}=\{0.003,0.3,0.4\} \mathrm{GeV}$
- Perturbatively stable for $q^{2} \gg 1 \mathrm{GeV}^{2}$
- Small uncertainty for $q^{2}<2 \mathrm{GeV}^{2}$
\rightarrow Systematic error in QCDF

- Sensitivity to $\omega_{0}=\{0.2,0.35,0.5\} \mathrm{GeV}$
- Affects region where $q^{2} \sim \omega_{0} M$.
\rightarrow Parametric error in QCDF

QCDF at NLO

Non-factorizable Vertex Corrections

(Factorizable vertex corrections included in form-factor ratios.)

- Independent of spectator quark - Same as for inclusive spectra.
- Essential to reduce renormalization-scale ambiguities in LO result.
- α_{s} and m_{c}-dependence contribute to error budget

Uncertainties mainly a perturbative issue (away from resonances).

Non-factorizable Spectator Scattering

(Factorizable spectator scattering included in form-factor ratios.)

- Depends on spectator charge \rightarrow isospin asymmetry.
- Depends on LCDAs for heavy and light mesons
\rightarrow included in hadronic (parametric) uncertainties. ($\sim 50 \%$ uncertain)
- Introduces new source of scale ambiguity
\rightarrow included in perturbative uncertainties.
- Non-factorizable quark-loop contributions
\rightarrow more complicated intermediate partonic/hadronic states.

Deserves further studies ...

Annihilation at NLO

(a)

(d)

(b)

(e)

(c)

(f)

- Not included in [Benekertr/seide]
\rightarrow Scale ambiguity from penguin coefficients C_{3-6} not fully resolved.

Potentially relevant for (accurate) isospin asymmetries ...

Power Corrections

- Power corrections (generally) not well-defined in QCDF sensitivity to endpoint configurations:

$$
\int_{0}^{1} \frac{d u}{1-u} \frac{\phi_{K}(u)}{1-u}=?, \quad \int_{0}^{\infty} \frac{d \omega}{\omega} \frac{\phi_{B}^{(+)}(\omega)}{\omega}=?
$$

- Ad-hoc regularization \rightarrow poor man's error estimate in QCDF

$$
\frac{d u}{1-u} \longrightarrow\left(1+\rho e^{i \phi}\right) \frac{d u}{1-u} \theta\left[1-\frac{\Lambda}{M}-u\right]
$$

- Alternative approaches (sum rules, k_{\perp}-factorization, \ldots) \rightarrow hadronic modeling (spectral functions, wave functions, ...)

(Still) awaits resolution within SCET

Conclusions

Theoretically Sound:

- QFT Formalism: Heavy-quark/large-recoil expansion - QCDF - SCET.
- Transparent predictions for LO contributions: Wilson coefficients \& helicity-based FFs.
- Reasonable accuracy for factorizable and non-factorizable NLO corrections.
- Reasonable control on (factorizable) quark-loop contributions.

Open Issues:

- Theoretical and experimental treatment of unstable particles $\left(K^{*}, \rho, \ldots\right)$.
- Ultimate accuracy for form factors and form-factor ratios.
[see also discussion by Matthew Wingate]
- Better control on spectator scattering, power corrections, annihilation.
- Significant duality violation through non-factorizable quark loops (?)
- Non-factorizable electromagnetic corrections.
- ...

Some issues may actually be resolved from experimental data !

Backup Slides

- Annihilation:

$$
\begin{aligned}
\left.\Delta \mathcal{T}_{\perp}^{\left(K^{*}\right)}\right|_{\mathrm{ann}}= & -e_{q} \frac{4 \pi^{2}}{3} \frac{f_{B} f_{\perp}^{\left(K^{*}\right)}}{m_{b} M}\left(C_{3}+\frac{4}{3}\left(C_{4}+3 C_{5}+4 C_{6}\right)\right) \int_{0}^{1} d u \frac{\phi_{\perp}^{\left(K^{*}\right)}(u)}{\bar{u}+u \hat{s}} \\
& +e_{q} \frac{2 \pi^{2}}{3} \frac{f_{B} f_{\|}^{\left(K^{*}\right)}}{m_{b} M}\left(C_{3}+\frac{4}{3}\left(C_{4}+12 C_{5}+16 C_{6}\right)\right) \frac{m_{K^{*}}}{(1-\hat{s}) \lambda_{B,+}\left(q^{2}\right)}
\end{aligned}
$$

- Hard-Scattering:

$$
\begin{aligned}
\left.\Delta \mathcal{T}_{\perp}^{\left(K^{*}\right)}\right|_{\mathrm{hsa}}= & e_{q} \frac{\alpha_{s} C_{F}}{4 \pi} \frac{\pi^{2} f_{B}}{N_{c} m_{b} M}\left\{12 C_{8}^{\mathrm{eff}} \frac{m_{b}}{M} f_{\perp}^{\left(K^{*}\right)} X_{\perp}(\hat{s})\right. \\
& +8 f_{\perp}^{\left(K^{*}\right)} \int_{0}^{1} d u \frac{\phi_{\perp}^{\left(K^{*}\right)}(u)}{\bar{u}+u \hat{s}} F_{V}(\bar{u}+u \hat{s}) \\
& \left.-\frac{4 m_{K} f_{\|}^{\left(K^{*}\right)}}{(1-\hat{s}) \lambda_{B,+}\left(q^{2}\right)} \int_{0}^{1} d u \int_{0}^{u} d v \frac{\phi_{\|}^{\left(K^{*}\right)}(v)}{\bar{v}} F_{V}(\bar{u}+u \hat{s})\right\}
\end{aligned}
$$

- threshold dependence of quark-loop function $F_{V}(\bar{u}+u \hat{s})$
- endpoint divergence in function $X_{\perp}(\hat{s})$
- ...

