$B \rightarrow V$ form factors

MATTHEW WINGATE DAMTP, UNIVERSITY OF CAMBRIDGE

Outline

***** Small recoil (large q^2): lattice QCD

***** Large recoil (low q^2): light-cone sum rules

Comparison

Combination

Form factor definitions

$$\begin{split} \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}b|B(p)\rangle &= \frac{2iV(q^2)}{m_B+m_V}\epsilon^{\mu\nu\rho\sigma}\varepsilon^*_{\nu}p'_{\rho}p_{\sigma}\\ \langle V(p',\varepsilon)|\bar{q}\hat{\gamma}^{\mu}\hat{\gamma}^5b|B(p)\rangle &= 2m_V A_0(q^2)\frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\\ &+(m_B+m_V)A_1(q^2)\left(\varepsilon^{*\mu}-\frac{\varepsilon^*\cdot q}{q^2}q^{\mu}\right)\\ &+A_2(q^2)\frac{\varepsilon^*\cdot q}{m_B+m_V}\left((p+p')^{\mu}-\frac{m_B^2-m_V^2}{q^2}q^{\mu}\right) \end{split}$$

$$q^{\nu} \langle V(p',\varepsilon) | \bar{q} \hat{\sigma}_{\mu\nu} b | B(p) \rangle = 2T_1(q^2) \epsilon_{\mu\rho\tau\sigma} \varepsilon^{*\rho} p^{\tau} p'^{\sigma}$$

$$q^{\nu} \langle V(p',\varepsilon) | \bar{q} \hat{\sigma}_{\mu\nu} \hat{\gamma}^5 b | B(p) \rangle = iT_2(q^2) [\varepsilon^*_{\mu} (m_B^2 - m_V^2) - (\varepsilon^* \cdot q)(p+p')_{\mu}]$$

$$+ iT_3(q^2) (\varepsilon^* \cdot q) \left[q_{\mu} - \frac{q^2}{m_B^2 - m_V^2} (p+p')_{\mu} \right]$$

Correlation functions

3-point function

$$C_{FJB}(\mathbf{p}', \mathbf{p}, x_0, y_0, z_0) = \sum_{\mathbf{y}} \sum_{\mathbf{z}} \left\langle \Phi_F(x) J(y) \Phi_B^{\dagger}(z) \right\rangle e^{-i\mathbf{p}' \cdot (\mathbf{x} - \mathbf{y})} e^{-i\mathbf{p} \cdot (\mathbf{y} - \mathbf{z})}$$

2-point functions

$$C_{BB}(\mathbf{p}, x_0, y_0) = \sum_{\mathbf{x}} \left\langle \Phi_B(x) \Phi_B^{\dagger}(y) \right\rangle e^{-i\mathbf{p} \cdot (\mathbf{x} - \mathbf{y})},$$

$$C_{FF}(\mathbf{p}', x_0, y_0) = \sum_{\mathbf{x}} \left\langle \Phi_F(x) \Phi_F^{\dagger}(y) \right\rangle e^{-i\mathbf{p}' \cdot (\mathbf{x} - \mathbf{y})}.$$

Interpolating operators

- $\Phi_V = ar u \gamma_j s$
- $\Phi_B = ar u \gamma_5 b$

Correlation functions

Large Euclidean-time behavior

$$C_{FJB}(\mathbf{p}', \mathbf{p}, \tau, T) \rightarrow A^{(FJB)}e^{-E_F\tau}e^{-E_B(T-\tau)},$$

$$C_{FF}(\mathbf{p}, \tau) \rightarrow A^{(FF)}e^{-E_F\tau},$$

$$C_{BB}(\mathbf{p}, \tau) \rightarrow A^{(BB)}e^{-E_B\tau},$$

$$A^{(FJB)} = \frac{\sqrt{Z_V}}{2E_V} \frac{\sqrt{Z_B}}{2E_B} \sum_s \varepsilon_j(p',s) \left\langle V\left(p',\varepsilon(p',s)\right) \mid J \mid B(p) \right\rangle,$$

$$A^{(FF)} = \sum_{s} \frac{Z_V}{2E_V} \varepsilon_j^*(p',s)\varepsilon_j(p',s)$$

$$A^{(BB)} = \frac{Z_B}{2E_B},$$

Unquenched LQCD calculation

Horgan, Liu, Meinel, Wingate, in preparation

MILC lattices (2+1 asqtad staggered)

label	#	N_x^3	$\times N_t$	$am_{\ell}^{\rm sea}/am_s^{\rm sea}$	r_1/a	$1/a~({ m GeV})$
c007 2	2109	20^{3}	$\times 64$	0.007/0.05	2.625(3)	1.660(12)
c02 2	2052	20^{3}	$\times 64$	0.02/0.05	2.644(3)	1.665(12)
f0062	1910	28^{3}	$\times 96$	0.0062/0.031	3.699(3)	2.330(17)

ensemble	$m_B (\text{GeV})$	m_{B_s} (GeV)	$m_{\pi} \; ({\rm MeV})$	$m_K \ ({ m MeV})$	m_{η_s} (MeV)	$m_{\rho} \; ({\rm MeV})$	m_{K^*} (MeV)	$m_{\phi} \ ({\rm MeV})$
c007	5.5439(32)	5.6233(7)	313.4(1)	563.1(1)	731.9(1)	892(28)	1045(6)	1142(3)
c02	5.5903(44)	5.6344(15)	519.2(1)	633.4(1)	730.6(1)	1050(7)	1106(4)	1162(3)
f0062	5.5785(22)	5.6629(13)	344.3(1)	589.3(2)	762.0(1)	971(7)	1035(4)	1134(2)
"physical"	5.279	5.366	140	495	686	775	892	1020

NRQCD b quarks

- Effective field theory, cutoff by lattice
- HQET power counting: requires working with low recoil
- Current matching

$$(\bar{q}\Gamma^{V,A}_{\mu}b)|_{\mathrm{cont}} \doteq (1+lpha_s
ho^{(\mu)})(\bar{c}\Gamma^{V,A}_{\mu}b)|_{\mathrm{latt}}$$

$$(\bar{q}\hat{\sigma}_{\mu
u}b)|_{
m cont} \doteq (1+lpha_s c^{(T
u)})(\bar{q}\hat{\sigma}_{\mu
u}b)|_{
m latt}$$

ensemble	C_v	$ ho^{(0)}$	$\rho^{(k)}$	$c^{(T0)}$	$c^{(Tj)}$
С	2.825	0.043	0.270	0.076	0.076
f	1.996	-0.058	0.332	0.320	0.320

Gulez et al., PRD69 (2003), PRD73 (2006); Mueller et al., PRD83 (2011)

Effective pole models

$$\begin{split} F(t) \ &= \ \frac{r_1}{1-t/m_R^2} + \frac{r_2}{1-t/m_{\rm fit}^2} + \frac{r_3}{(1-t/m_{\rm fit}^2)^2} \\ &r_3 = 0 \ {\rm for} \ V, A_0, T_1 \\ &r_1 = r_3 = 0 \ {\rm for} \ A_1, T_2 \\ &r_1 = 0 \ {\rm for} \ A_2, T_3 \end{split}$$

Becirevic & Kaidalov; Ball & Zwicky

Form factor shape

 $t = q^2$ $t_{\pm} = (m_B \pm m_F)^2$ Choose, e.g. $t_0 = 12 \text{ GeV}^2$ $z = rac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$

Simplified series expansion

Series (z) expansion

$$F(t) = rac{1}{1-t/m_{ ext{res}}^2} \sum_n a_n z^n$$

Bourrely, Caprini, Lellouch PRD **79** (2009) following Okubo; Bourrely, Machet, de Rafael; Boyd, Grinstein, Lebed; Boyd & Savage; Arneson *et al.;* FNAL/MILC lattice collab; ...

Kinematic-continuum-mass fits

$$\equiv 1/P(t)$$

$$F(t) = \underbrace{\frac{1}{1 - t/m_{\text{res}}^2}}_{n} [1 + b_1(aE_F)^2 + \dots] \sum_n a_n d_n z^n$$
discretization errors

HPQCD

 $d_n = 1 + c_{n1} rac{m_P^2}{(4\pi f)^2} + \dots$

quark mass dependence

$B \rightarrow K^*$, $P(t)T_1 \& P(t)T_2$, vs. z

 $B \rightarrow K^*$, $T_1 \& T_2$, vs. $q^2/q^2 max$

 $B \rightarrow K^*, V, A_0, A_1, \text{vs. } q^2/q^2 \max$

 $B_s \rightarrow \varphi, V, A_0, A_1, \text{vs. } q^2/q^2 \max$

Discretization errors

LQCD form factors

- Now removed quenched uncertainty
- Calculation done with low recoil kinematics, compl. LCSR
- **Reduced statistical error below systematic (except for** $B \rightarrow \rho$ **)**
- Dominant systematic is due to perturbative operator matching
- Caveat: effect of narrow width approximation?

Light cone sum rules (LCSR)

- Light cone expansion: correlation functions factorized as nonperturbative distribution amplitudes convolved with perturbative amplitudes
- Valid for low q^2 , where $E_V \gg \Lambda_{\text{QCD}}$
- Dispersion relations for correlation functions
- Quark-hadron duality to isolate B contribution

Light cone sum rule results

Ball & Zwicky, Phys. Rev. D71, 014029 (2005)

10% uncertainty, cannot reduce below 7%

 \clubsuit Uncertainty grows as one extrapolates to large q^2

Narrow width approximation

V comparison

A_1 comparison

$T_1 \& T_2$ comparisons

A_0 comparison

 $B_s \rightarrow \varphi$

Combinations

Combined LCSR-LQCD fit

Bharucha, Feldmann, Wick, JHEP 09 (2010) 090

- LCSR and LQCD data, including correlations
- Series expansion or simplified series expansion
- Implement dispersive bounds (if possible: probably need A_2 and T_3)

Summary

Unquenched LQCD at high q², with statistics and other systematics also improved (RR Horgan, Z Liu, S Meinel, MW)

• LCSR at low q^2 (P Ball & R Zwicky)

- To do: combined fit to LQCD & LCSR results, include dispersive bounds (as in Bharucha, Feldmann, Wick) if possible (may need A₂, T₃)
- Open question: errors due to narrow width approximation? Can we learn something by studying simpler matrix elements through threshold?

Quenched $T_1 \& T_2$

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

Quenched V, A_0, A_1, A_2

 $q^2 (GeV)^2$ $q^2 (GeV)^2$ $\frac{20}{3}$ 12 14 20 12 14 16 18 10 18 16 A2A1 0.6 2.5 2 0.4 1.5 0.2 β=6.2 0.5 β=6.0 0 0 V A0 2.5 3 2 1.5 2 0.5 0 ⊾ 10 $\begin{array}{c} 1\\20 \end{array}$ $\frac{14}{q^2} \frac{16}{(GeV)^2}$ 18 20 12 16 18 14 12 $q^2 (GeV)^2$

Bowler, Gill, Maynard, Flynn, JHEP 05 (2004) 035

