$B \rightarrow V$ form factors

Matthew Wingate
DAMTP, UNIVERSITY OF CAMBRIDGE

Outline

\& Small recoil (large q^{2}): lattice QCD
\& Large recoil (low q^{2}): light-cone sum rules
\& Comparison
$\%$ Combination

Form factor definitions

$$
\begin{aligned}
& \left\langle V\left(p^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\gamma}^{\mu} b|B(p)\rangle=\frac{2 \mathrm{i} V\left(q^{2}\right)}{m_{B}+m_{V}} \epsilon^{\mu \nu \rho \sigma} \varepsilon_{\nu}^{*} p_{\rho}^{\prime} p_{\sigma} \\
& \left\langle V\left(p^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\gamma}^{\mu} \hat{\gamma}^{5} b|B(p)\rangle=2 m_{r} A_{0}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu} \\
& +\left(m_{B}+m_{V} A_{1}\left(q^{2}\right)\left(\varepsilon^{* \mu}-\frac{\varepsilon^{*} \cdot q}{q^{2}} q^{\mu}\right)\right. \\
& \therefore A_{2}\left(q^{2}\right) \frac{\varepsilon^{*} \cdot q}{m_{B}+m_{V}}\left(\left(p+p^{\prime}\right)^{\mu}-\frac{m_{B}^{2}-m_{V}^{2}}{q^{2}} q^{\mu}\right) \\
& q^{\nu}\left\langle V\left(p^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\sigma}_{\mu \nu} b|B(p)\rangle=2 T_{1}\left(q^{2}\right) \epsilon_{\mu \rho \tau \sigma} \varepsilon^{* \rho} p^{\tau} p^{\prime \sigma} \\
& q^{\nu}\left\langle V\left(p^{\prime}, \varepsilon\right)\right| \bar{q} \hat{\sigma}_{\mu \nu} \hat{\gamma}^{5} b|B(p)\rangle=\mathrm{iT}_{2}\left(q^{2}\right)\left[\varepsilon_{\mu}^{*}\left(m_{B}^{2}-m_{V}^{2}\right)-\left(\varepsilon^{*} \cdot q\right)\left(p+p^{\prime}\right)_{\mu}\right] \\
& 4 \mathrm{i}_{3}\left(\dot{q}^{2}\right)\left(\varepsilon^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}\left(p+p^{\prime}\right)_{\mu}\right]
\end{aligned}
$$

LQCD

Correlation functions

3-point function

$$
C_{F J B}\left(\mathbf{p}^{\prime}, \mathbf{p}, x_{0}, y_{0}, z_{0}\right)=\sum_{\mathbf{y}} \sum_{\mathbf{z}}\left\langle\Phi_{F}(x) J(y) \Phi_{B}^{\dagger}(z)\right\rangle e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})} e^{-i \mathbf{p} \cdot(\mathbf{y}-\mathbf{z})}
$$

2-point functions

$$
\begin{aligned}
C_{B B}\left(\mathbf{p}, x_{0}, y_{0}\right) & =\sum_{\mathbf{x}}\left\langle\Phi_{B}(x) \Phi_{B}^{\dagger}(y)\right\rangle e^{-i \mathbf{p} \cdot(\mathbf{x}-\mathbf{y})}, \\
C_{F F}\left(\mathbf{p}^{\prime}, x_{0}, y_{0}\right) & =\sum_{\mathbf{x}}\left\langle\Phi_{F}(x) \Phi_{F}^{\dagger}(y)\right\rangle e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})} .
\end{aligned}
$$

Interpolating operators

$$
\begin{aligned}
& \Phi_{V}=\bar{u} \gamma_{j} s \\
& \Phi_{B}=\bar{u} \gamma_{5} b
\end{aligned}
$$

Correlation functions

Large Euclidean-time behavior

$$
\begin{aligned}
& C_{F J B}\left(\mathbf{p}^{\prime}, \mathbf{p}, \tau, T\right) \rightarrow A^{(F J B)} e^{-E_{F} \tau} e^{-E_{B}(T-\tau)}, \\
& C_{F F}(\mathbf{p}, \tau) \rightarrow A^{(F F)} e^{-E_{F} \tau}, \\
& C_{B B}(\mathbf{p}, \tau) \rightarrow A^{(B B)} e^{-E_{B} \tau}, \\
& A^{(F J B)}=\frac{\sqrt{Z_{V}}}{2 E_{V}} \frac{\sqrt{Z_{B}}}{2 E_{B}} \sum_{s} \varepsilon_{j}\left(p^{\prime}, s\right)\left\langle V\left(p^{\prime}, \varepsilon\left(p^{\prime}, s\right)\right)\right| J|B(p)\rangle, \\
& A^{(F F)}=\sum_{s} \frac{Z_{V}}{2 E_{V}} \varepsilon_{j}^{*}\left(p^{\prime}, s\right) \varepsilon_{j}\left(p^{\prime}, s\right) \\
& A^{(B B)}=\frac{Z_{B}}{2 E_{B}},
\end{aligned}
$$

LQCD Results

Unquenched LQCD calculation

Horgan, Liu, Meinel, Wingate, in preparation
MILC lattices (2+1 asqtad staggered)

label	$\#$	$N_{x}^{3} \times N_{t}$	$a m_{\ell}^{\text {sea }} / a m_{s}^{\text {sea }}$	r_{1} / a	$1 / a(\mathrm{GeV})$
c007	2109	$20^{3} \times 64$	$0.007 / 0.05$	$2.625(3)$	$1.660(12)$
c02	2052	$20^{3} \times 64$	$0.02 / 0.05$	$2.644(3)$	$1.665(12)$
f0062	1910	$28^{3} \times 96$	$0.0062 / 0.031$	$3.699(3)$	$2.330(17)$

\Longrightarrow								
ensemble	$m_{B}(\mathrm{GeV})$	$m_{B_{s}}(\mathrm{GeV})$	$m_{\pi}(\mathrm{MeV})$	$m_{K}(\mathrm{MeV})$	$m_{\eta_{s}}(\mathrm{MeV})$	$m_{\rho}(\mathrm{MeV})$	$m_{K^{*}}(\mathrm{MeV})$	$m_{\phi}(\mathrm{MeV})$
c007	5.5439(32)	5.6233(7)	313.4(1)	563.1(1)	731.9(1)	892(28)	1045(6)	1142(3)
c02	5.5903(44)	$5.6344(15)$	519.2(1)	633.4(1)	730.6(1)	1050(7)	1106(4)	1162(3)
f0062	$5.5785(22)$	$5.6629(13)$	344.3(1)	589.3(2)	762.0(1)	971(7)	1035(4)	1134(2)
"physical"	5.279	5.366	140	495	686	775	892	1020

NRQCD b quarks

Effective field theory, cutoff by lattice
HQET power counting: requires working with low recoil
$\%$ Current matching

$$
\begin{aligned}
\left.\left(\bar{q} \Gamma_{\mu}^{V, A} b\right)\right|_{\mathrm{cont}} & \left.\doteq\left(1+\alpha_{s} \rho^{(\mu)}\right)\left(\bar{c} \Gamma_{\mu}^{V, A} b\right)\right|_{\text {latt }} \\
\left.\left(\bar{q} \hat{\sigma}_{\mu \nu} b\right)\right|_{\mathrm{cont}} & \left.\doteq\left(1+\alpha_{s} c^{(T \nu)}\right)\left(\bar{q} \hat{\sigma}_{\mu \nu} b\right)\right|_{\mathrm{latt}}
\end{aligned}
$$

ensemble	C_{v}	$\rho^{(0)}$	$\rho^{(k)}$	$c^{(T 0)}$	$c^{(T j)}$
c	2.825	0.043	0.270	0.076	0.076
f	1.996	-0.058	0.332	0.320	0.320

Gulez et al., PRD69 (2003), PRD73 (2006); Mueller et al., PRD83 (2011)

Effective pole models

$$
\begin{gathered}
F(t)=\frac{r_{1}}{1-t / m_{R}^{2}}+\frac{r_{2}}{1-t / m_{\mathrm{fit}}^{2}}+\frac{r_{3}}{\left(1-t / m_{\mathrm{fit}}^{2}\right)^{2}} \\
r_{3}=0 \text { for } V, A_{0}, T_{1} \\
r_{1}=r_{3}=0 \text { for } A_{1}, T_{2} \\
r_{1}=0 \text { for } A_{2}, T_{3}
\end{gathered}
$$

Becirevic \& Kaidalov;
Ball \& Zwicky

Form factor shape

Series (z) expansion

$$
t=q^{2} \quad t_{ \pm}=\left(m_{B} \pm m_{F}\right)^{2}
$$

Choose, e.g. $\quad t_{0}=12 \mathrm{GeV}^{2}$

$$
z=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}
$$

Simplified series expansion

$$
F(t)=\frac{1}{1-t / m_{\mathrm{res}}^{2}} \sum_{n} a_{n} z^{n}
$$

Bourrely, Caprini, Lellouch PRD 79 (2009)
following Okubo; Bourrely, Machet, de Rafael; Boyd, Grinstein, Lebed; Boyd \& Savage; Arneson et al.; FNAL/MILC lattice collab; ...

Kinematic-continuum-mass fits

$$
F(t)=\underbrace{}_{\frac{1}{1-t / m_{\mathrm{res}}^{2}}\left[1+b_{1}\left(a E_{F}\right)^{2}+\ldots\right] \sum_{n} a_{n} d_{n} z^{n}}
$$

$$
d_{n}=1+c_{n 1} \frac{m_{P}^{2}}{(4 \pi f)^{2}}+\ldots
$$

quark mass dependence

$B \rightarrow K^{*}, P(t) T_{1} \& P(t) T_{2}$, vs. z

$B \rightarrow K^{*}, T_{1} \& T_{2}$, vs. $q^{2} / q^{2} \max$

$B \rightarrow K^{*}, V, A_{0}, A_{1}$, vs. q^{2} / q^{2} max

$B_{s} \rightarrow \varphi, V, A_{0}, A_{1}$, vs. q^{2} / q^{2} max

Discretization errors

LQCD form factors

\% Now removed quenched uncertainty
Calculation done with low recoil kinematics, compl. LCSR
\& Reduced statistical error below systematic (except for $B \rightarrow \rho$)
$\%$ Dominant systematic is due to perturbative operator matching
\& Caveat: effect of narrow width approximation?
$L C S R$

Light cone sum rules (LCSR)

\% Light cone expansion: correlation functions factorized as nonperturbative distribution amplitudes convolved with perturbative amplitudes
\& Valid for low q^{2}, where $E_{V} \gg \Lambda_{\mathrm{QCD}}$
\& Dispersion relations for correlation functions
\& Quark-hadron duality to isolate B contribution

Light cone sum rule results

Ball \& Zwicky, Phys. Rev. D71, 014029 (2005)

10% uncertainty, cannot reduce below 7%
Uncertainty grows as one extrapolates to large q^{2}
Narrow width approximation

LCSR \& LQCD

V comparison

A_{1} comparison

$T_{1} \& T_{2}$ comparisons

A_{0} comparison

$B_{s} \rightarrow \varphi$

$B_{s} \rightarrow \varphi$

Combinations

Combined LCSR-LQCD fit

Bharucha, Feldmann, Wick, JHEP 09 (2010) 090
\& LCSR and LQCD data, including correlations
\& Series expansion or simplified series expansion
$\%$ Implement dispersive bounds (if possible: probably need A_{2} and T_{3})

Summary

\% Unquenched LQCD at high q^{2}, with statistics and other systematics also improved (RR Horgan, Z Liu, S Meinel, MW)
\& LCSR at low q^{2} (P Ball \& R Zwicky)
\& To do: combined fit to LQCD \& LCSR results, include dispersive bounds (as in Bharucha, Feldmann, Wick) if possible (may need A_{2}, T_{3})
\& Open question: errors due to narrow width approximation? Can we learn something by studying simpler matrix elements through threshold?

Quenched $T_{1} \& T_{2}$

Bećirević-Lubicz-Mescia, Nucl. Phys. B769, 31 (2007)

Quenched V, A_{0}, A_{1}, A_{2}

Bowler, Gill, Maynard, Flynn, JHEP 05 (2004) 035

Figure 4: The form factors on both lattices. The vertical scale is different for each form factor.

