Model independent determination of $|V_{ub}|$ using exclusive B and D decays

Physics reach of rare and exclusive B decays

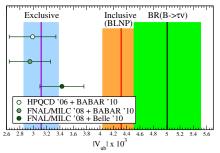
Patrick Owen, on behalf of the LHCb collaboration

10th September 2012

Introduction

- 2 Theoretical idea with vectors
- Occays with pseudo scalars
- Approximate experimental uncertainties

Motivation



- Three ways to measure $|V_{ub}|$, none of them agree with each other:
 - $B^0 \rightarrow \pi^- \mu^+ \nu$ decays, rely on lattice QCD.
 - $B \rightarrow X_u \mu^+ \nu$ decays, need to extrapolate through open charm region.
 - $B^+ \rightarrow \tau^+ \nu_{\tau}$, difficult experimentally.
- BELLE's latest results [here] have poured cold water on the $B^+ \rightarrow \tau^+ \nu_{\tau}$ excitement.

Model independent $|V_{ub}|$

- Paper [P.R.D70 114005] (and Refs. therein) outlines another method of measuring |V_{ub}|.
- At low recoil $(y = E_h/m_h)$ can use operator product expansion to control the long distance effects.
- Theoretically cleaner than the exclusive/inclusive methods, and model independent.
- Need to measure ratio of branching fractions $B^+ \to \rho^0 \mu^+ \nu$ and $B^0 \to K^{*0} \mu^+ \mu^-$.

$$\frac{\mathcal{B}(B^+ \to \rho^0 \mu^+ \nu)}{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)} \propto |V_{ub}|^2 \frac{R_B(y)}{N_{eff}(y)}$$

- Measurement is contaminated by $R_B(y)$, the ratio of helicity amplitudes of the two decays.
- Dominant theoretical uncertainty on $\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)$ of ~10% comes from $N_{eff}(y)$.

Use D decays to reduce form factor uncertainties.

- Can reduce the uncertainty of $R_B(y)$ using D decays.
- $R_B(y)$ and $R_D(y)$ must be taken at the same value of y.

$$\frac{R_B(y)}{R_D(y)} = 1 + \mathcal{O}(m_s(\frac{1}{m_c} - \frac{1}{m_b}))$$

- The proposed D decays are $D^+ \rightarrow K^{*0} \mu^+ \nu$ and $D^+ \rightarrow \rho^0 \mu^+ \nu$.
- The corrections shown above are even smaller than the dimensional estimate [P.L.B420, 359, P.R.D. 53, 4937].

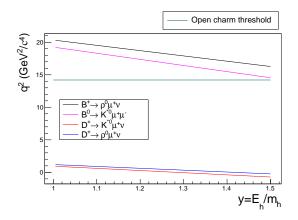
Model independent $|V_{ub}|$

- End up with a double ratio of branching fractions.
- Estimated theoretical error on $|V_{ub}|$ is 5%.

$$|V_{ub}|^{2} \alpha \frac{\frac{\mathcal{B}(B^{+} \rightarrow \rho^{0} \mu^{+} \nu)}{\mathcal{B}(B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-})}}{\frac{\mathcal{B}(D^{+} \rightarrow \rho^{0} \mu^{+} \nu)}{\mathcal{B}(D^{+} \rightarrow K^{*0} \mu^{+} \nu)}}$$

- Need to measure the branching fraction of these decays at low recoil.
- Low recoil is low enough as long as q^2 is above open charm threshold $(q^2 > 14.2 \,\mathrm{GeV}^2/c^4)$ translates into recoil range of y = 1 1.5 for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$.

Recoil vs q^2 - vectors



 The maximum recoil for D⁺→ K^{*0}μ⁺ν is 1.3, but as form factor only varies by 20% across this region can extrapolate beyond kinematic limit to 1.5 [P.L.B420, 359,P.R.D. 53, 4937]

Don't need to use vectors, can use psudeoscalars?

• Can also form the same ratio with scalars:

$$|V_{ub}|^2 \alpha \frac{\frac{\mathcal{B}(B^0 \to \pi^- \mu^+ \nu)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}}{\frac{\mathcal{B}(D^0 \to \pi^- \mu^+ \nu)}{\mathcal{B}(D^0 \to K^- \mu^+ \nu)}} ?$$

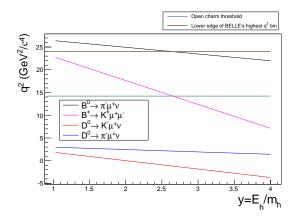
- Experimentally much easier, does the theory work for these decays too?
- Low recoil for $B^+ \rightarrow K^+ \mu^+ \mu^-$ is y = 1 2.6.

Analysis Strategy

- Would then need to measure four decays between 1-2.6.
 - $B^0 \to \pi^- \mu^+ \nu$: $\mathcal{B} = (1.34 \pm 0.08) \times 10^{-4}$
 - $B^+ \to K^+ \mu^+ \mu^-$: $\mathcal{B} = (4.8 \pm 0.7) \times 10^{-7}$
 - $D^0 \to \pi^- \mu^+ \nu$: $\mathcal{B} = (0.24 \pm 0.02)\%$
 - $D^0 \to K^- \mu^+ \nu$: $\mathcal{B} = (3.31 \pm 0.13)\%$
- $D^0 \to K^- \mu^+ \nu$ has a huge rate and $B^+ \to K^+ \mu^+ \mu^-$ has a very distinctive signature.
- $D^0 \to \pi^- \mu^+ \nu$ has an order of magnitude less BF than $D^0 \to K^- \mu^+ \nu$ and more background.
- $B^0 \rightarrow \pi^- \mu^+ \nu$ is difficult at LHCb we probably can't do better than b-factories. For now the plan is to get it from the literature.

イロト 不得下 イヨト イヨト 二日

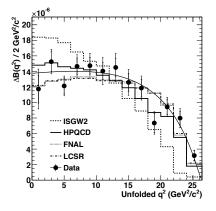
Recoil vs q^2 - psuedoscalar modes



• Low recoil (y = 1 - 2.6) corresponds to very high q^2 values for the π modes due to the low π mass.

• Will have to extrapolate $D^0 \rightarrow K^- \mu^+ \nu$ from 2.0 to 2.6.

• We will get $B^0 \rightarrow \pi^- \mu^+ \nu$ from the literature, below is from BELLE.



- Only the last bin corresponds to y = 1 2.6, with a stat error of $22\% \rightarrow 11\%$ on $|V_{ub}|$.
- This will be the limiting factor for $|V_{ub}|$ unless we can use the other bins somehow.

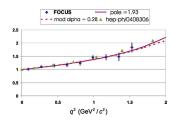
• Assuming systematic of 5%, rough estimate of yields gives estimated error on $|V_{ub}|$.

Recoil range	q ² range	$N_{B^+ \rightarrow K^+ \mu^+ \mu^-}$	$\sigma(d\mathcal{B}/dy)$	$\sigma(V_{ub})$
1 - 1.8	18 - 22	500	6.7%	3.3%
1 - 2.2	16 - 22	1000	5.9%	2.9%
1 - 2.6	14 - 22	1500	5.6%	2.8%

• With 3 fb⁻¹, $B^+ \rightarrow K^+ \mu^+ \mu^-$ will not be the limiting factor for this analysis.

$D^0 \rightarrow \pi^- \mu^+ \nu$ and $D^0 \rightarrow \underline{K^-} \mu^+ \nu$

- Expect $\mathcal{O}(1M)$ $D^0 \to K^- \mu^+ \nu$ candidates, $\mathcal{O}(100K)$ $D^0 \to \pi^- \mu^+ \nu$ candidates.
- ~3% of $D^0 \rightarrow \pi^- \mu^+ \nu$ lie in the low (1 2.6) recoil region.



• Unlike $D^+ \rightarrow K^{*0}\mu^+\nu$, the form factor for $D^0 \rightarrow K^-\mu^+\nu$ varies by 100%, still OK to extrapolate?

 $f^+(q^2)$ for $D^0
ightarrow K^- \mu^+
u$.

• • = • • = •

- $|V_{ub}|$ is an interesting parameter and worth measuring (if < 20% precision).
- With the relatively large samples of FCNC available at high q² at LHCb, a model independent measurement becomes possible.
- $D^+ \rightarrow \rho^0 \mu^+ \nu$ is very difficult to measure at LHCb.
- Measurement with pseudo-scalars is much easier experimentally.
- The pion is very light, causes issues when requiring a common recoil range between all modes.
- If no-one comes up with a show-stopper, we will go ahead and measure this.