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Question?
The super flavour factories (and maybe LHCb) will in the 

future provide new inclusive (and exclusive) measurements. If 
the statistical accuracy is poorer than in the exclusive modes at 

LHCb, what is most important to pursue here?

Observables with:

smaller theoretical (and experimental) uncertainties

complementary information on wilson coefficients/
non-perturbative uncertainties

sensitivity to different (exotic) types of new physics



Rare B-decay Workshop

I will discuss on

B̅ → Xs γ, B̅ → Xs l+ l-, B̅ → Xs υ ̄ υ & B̅ → K(*) υ ̄ υ
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B̅ → Xs γ @ NNLO
B̅ → Xs γ is an (approximately) 

inclusive decay and as such well 
approximated by the partonic decay  

It is sensitive to chirality flipping 
new interactions (h+, A-terms)

Partial NNLO [Misiak et. al. `07]:
BRth( B̅ → Xs γ ) = 3.15 (23) ·∙  10-4 

BRexp( B̅ → Xs γ ) = 3.43 (21) (7) ·∙ 10-4 

[HFAG `12]  
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Combining our results for various O(α2
s) corrections to the weak radiative B-meson decay, we

are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in
QCD. We find B(B̄ → Xsγ) = (3.15 ± 0.23) × 10−4 for Eγ > 1.6 GeV in the B̄-meson rest frame.
The four types of uncertainties: nonperturbative (5%), parametric (3%), higher-order (3%) and
mc-interpolation ambiguity (3%) have been added in quadrature to obtain the total error.

PACS numbers: 12.38.Bx, 13.20.He

The inclusive radiative B-meson decay provides im-
portant constraints on the minimal supersymmetric stan-
dard model and many other theories of new physics at the
electroweak scale. The power of such constraints depends
on the accuracy of both the experiments and the stan-
dard model (SM) calculations. The latest measurements
by Belle and BABAR are reported in Refs. [1, 2]. The
world average performed by the Heavy Flavor Averaging
Group [3] for Eγ > 1.6 GeV reads

B(B̄ → Xsγ) =
(

3.55 ± 0.24 +0.09
−0.10 ± 0.03

)

× 10−4. (1)

The combined error in the above result is of the same
size as the expected O(α2

s) next-to-next-to-leading or-
der (NNLO) QCD corrections to the perturbative de-
cay width Γ(b → Xparton

s γ), and larger than the known
nonperturbative corrections to the relation Γ(B̄ →
Xsγ) # Γ(b → Xparton

s γ) [4]–[6]. Thus, calculating the
SM prediction for the b-quark decay rate at the NNLO is
necessary for taking full advantage of the measurements.

Evaluating the O(α2
s) corrections to B(b → Xparton

s γ)
is a very involved task because hundreds of three-loop
on-shell and thousands of four-loop tadpole Feynman di-
agrams need to be computed. In a series of papers [7]–
[14], we have presented partial contributions to this en-
terprise. The purpose of the present Letter is to combine
all the existing results and obtain the first estimate of
the branching ratio at the NNLO. We call it an estimate
rather than a prediction because some of the numeri-
cally important contributions have been found using an
interpolation in the charm quark mass, which introduces
uncertainties that are difficult to quantify.

!
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FIG. 1: Sample LO diagram for the b → sγ transition.

Let us begin with recalling that the leading-order (LO)
contribution to the considered decay originates from one-
loop diagrams in the SM. An example of such a diagram
is shown in Fig. 1. Dressing this diagram with one or
two virtual gluons gives examples of diagrams that one
encounters at the next-to-leading order (NLO) and the
NNLO. In addition, one should include diagrams describ-
ing the bremsstrahlung of gluons and light quarks.

An additional difficulty in the analysis of the con-
sidered decay is the presence of large logarithms
(αs ln M2

W /m2
b)

n that should be resummed at each or-
der of the perturbation series in αs. To do so, one em-
ploys a low-energy effective theory that arises after de-
coupling the top quark and the heavy electroweak bosons.
Weak interaction vertices (operators) in this theory are
either of dipole type (s̄σµνbFµν , s̄σµνT abGa

µν) or con-
tain four quarks ([s̄Γb][q̄Γ′q]). Coupling constants at
these vertices (Wilson coefficients) are first evaluated
at the electroweak renormalization scale µ0 ∼ mt, MW

by solving the so-called matching conditions. Next,
they are evolved down to the low-energy scale µb ∼ mb

3

mc(mc) and the semileptonic phase-space factor

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2 Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
. (3)

The factor C has been determined in Ref. [16] together
with mc(mc) from a global fit to the semileptonic data.
If the normalization to B(B̄ → Xceν̄) was not applied in
the B̄ → Xsγ calculation, the error due to mc(mc) would
amount to ±2.8%. At the same time, one would need to
take into account uncertainties in m5

b and the Cabibbo-
Kobayashi-Maskawa factor |V !

tsVtb|2, each of which ex-
ceeds ±3%.

The nonperturbative uncertainty in Eq. (2) is due to
matrix elements of the four-quark operators in the pres-
ence of one gluon that is not soft (Q2 ∼ m2

b , mbΛ, where
Λ ∼ ΛQCD). Unknown nonperturbative corrections to
them scale like αsΛ/mb in the limit mc # mb/2 and like
αsΛ2/m2

c in the limit mc $ mb/2. Because mc < mb/2
in reality, αsΛ/mb should be considered as the quan-
tity that sets the size of such effects. Consequently, a
±5% nonperturbative uncertainty has been assigned to
the result in Eq. (2). This is the dominant uncertainty at
present. Thus, a detailed analysis of such effects would
be more than welcome. So far, no published results on
this issue exist. Even lacking a trustworthy method for
calculating such effects, it might be possible to put rough
upper bounds on them that could supersede the current
guess-estimate of ±5%. Nonperturbative corrections to
inclusive B̄ → Xd,sγ decays that scale like Λ/mb may
arise when the b-quark annihilation vertex does not co-
incide with the hard photon emission vertex; see, e.g.,
Ref. [6] or comments on B̄ → Xdγ in Sec. 2 of Ref. [5].

The NNLO central value in Eq. (2) differs from some
of the previous NLO predictions by between 1 and 2 error
bars of the NLO results. Because those error bars were
obtained by adding various theoretical uncertainties in
quadrature, such a shift is not improbable, similarly to
shifts by less than 2σ in experimental results. The shift
from the NLO to the NNLO level diminishes with low-
ering the value of µc, which has motivated us to use the
relatively low µc = 1.5 GeV as a reference value here.

The NNLO results turn out to be only marginally de-
pendent on whether one follows (or not) the approach
of Ref. [17] where the top-quark contribution to the de-
cay amplitude was calculated separately and rescaled by
quark mass ratios to improve convergence of the pertur-
bation series. Although the top contribution alone in-
deed behaves better also at the NNLO level when such
an approach is used, the charm quark contribution (to
which no rescaling has been applied in Ref. [17]) does
not turn out to be particularly stable beyond the NLO.
Consequently, in the derivation of Eq. (2) and Fig. 2, we
have used the simpler method of treating charm and top
sectors together.

Our result in Eq. (2) has been obtained under the as-
sumption that the photonic dipole operator contribution
to the integrated Eγ spectrum below 1.6 GeV is well ap-
proximated by a fixed-order perturbative calculation (see
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FIG. 3: B(B̄ → Xsγ) as a function of the charged Higgs boson
mass in the THDM II for tan β = 2 (solid lines). The dashed and
dotted lines show the SM and experimental results, respectively
(see the text).

Note added). For lower values of the photon energy cut,
the following numerical fit can be used:

(

B(Eγ > E0)

B(Eγ > 1.6 GeV)

)

fixed
order

% 1 + 0.15x − 0.14x2, (4)

where x = 1−E0/(1.6 GeV). This formula coincides with
our NNLO results up to ±0.1% for E0 ∈ [1.0, 1.6] GeV.
The error is practically E0-independent in this range.

In the remainder of this Letter, we shall update the
B̄ → Xsγ constraints on the charged Higgs boson mass
in the two-Higgs-doublet-model II (THDM II) [18]. The
solid lines in Fig. 3 show the dependence of B(B̄ → Xsγ)
on this mass when the ratio of the two vacuum expecta-
tion values, tanβ, is equal to 2. The dashed and dotted
lines show the SM (NNLO) and the experimental results,
respectively. In each case, the middle line is the cen-
tral value, while the other two lines indicate uncertainties
that one obtains by adding all the errors in quadrature.

In our THDM calculation, matching of the Wilson co-
efficients at the electroweak scale is complete up to the
NLO [19], but the NNLO terms contain only the SM con-
tributions (the THDM ones remain unknown). In conse-
quence, the higher-order uncertainty becomes somewhat
larger. This effect is estimated by varying the matching
scale µ0 from half to twice its central value. It does not
exceed ±1% for the MH+ range in Fig. 3.

Even though the experimental result is above the SM
one, the lower bound on MH+ for a generic value of
tan β remains stronger than what one can derive from
any other currently available measurement. If all the
uncertainties are treated as Gaussian and combined in
quadrature, the 95% (99%) CL bound amounts to around
295 (230)GeV. It is found for tanβ → ∞ but stays prac-
tically constant down to tanβ % 2. For smaller tan β,
the branching ratio and the bound on MH+ increase.

The contour plot in Fig. 4 shows the dependence of
the MH+ bound on the experimental central value and
error. The current experimental result (1) is indicated by
the black square. Consequences of the future upgrades in
the measurements will easily be read out from the plot,
so long as no progress on the theoretical side is made. Of

[Misiak et. al. `07]

Perturbative Improvements
[Czakon et al `07, Asatrian et. al. `07,

Boughezal et.al. `07, Ewerth `08,
Pak et al. `08, Haisch et.al. `10,

Misiak et. al.`10, Misiak et. al.`12] 



B̅ → Xs γ Theory Uncertainty 
For the integrated rate of only Q7 use optical
theorem and OPE: corrections of O(ΛQCD 2/mb 2)

Resolved photon contributions are O(ΛQCD/mb)
for Q1Q7, Q7Q8 & Q8Q8 [Benzke, Lee, Neubert, Paz `10]

Agrees with 5% uncertainty assigned in [Misiak `07]

ACP(b→s γ) = [-0.6,2.8]% [Benzke, Lee, Neubert, Paz `11]

Theory & Experimental uncertainty of same size 

b→d γ: Q1u Q7 vanishes at O(ΛQCD/mb) in CP averaged
5

Resolved Photon Contributions

Top line: Q7γ −Q8g

Bottom left: Q8g −Q8g

Bottom right: Q1 −Q7γ

• Q1 −Q8g and Q1 −Q1 give a 1/m2
b effect

CKM 2010 - Theory of Inclusive Radiative B Decays - Gil Paz 19



B̅ → Xs γ Further Comments

The value of                                      and mc depends on the 

scheme (1S or kinetic) [Gambino et.al. `08] 3% shift [Misiak `08]

In the perturbative cut-off dependent term P(E0) a log 
appears: log(δ) = log(1 - 2 E0/mb)

Summing this log for small cut-off/logs leads to an
unnatural behaviour in the perturbative theory [Misiak `08]

This results in the theory prediction of Becher & Neubert
6
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QCD Calculations of Radiative B Decays
M. Misiak
Institute of Theoretical Physics, Warsaw University, Warsaw, Poland

The current status of B̄ → Xsγ decay rate calculations is summarized. Missing ingredients at the NNLO level are
listed. The global normalization factor and non-perturbative effects are discussed. Arguments are presented that
results for the cutoff-enhanced perturbative corrections have been misused in Ref. [15] by applying them in the re-

gion Eγ ∈ [1.0, 1.6]GeV, which means that the corresponding numerical effect on B
(

B̄ → Xsγ, Eγ > 1.6GeV
)

is unreliable.

1. Introduction

The motivation for precision studies of radiative B
decays is well known. First, they are sensitive to new
physics loop effects that often arise at the same order
in the electroweak couplings as the leading Standard
Model (SM) contributions. Moreover, the inclusive
B̄ → Xsγ rate is well approximated by the perturba-
tively calculable radiative decay rate of the b-quark.
The CLEO [1], BELLE [2] and BABAR [3] measure-
ments have been combined by HFAG [4] to get

B
(

B̄ → Xsγ
)

exp
= (3.52 ± 0.23 ± 0.09)× 10−4 (1)

for Eγ > 1.6 GeV. The corresponding SM prediction
that was published two years ago1 reads [5]

B
(

B̄ → Xsγ
)

SM
= (3.15 ± 0.23) × 10−4. (2)

Its consistency with Eq. (1) provides strong constrains
on many extensions of the SM (see, e.g., Ref. [6]).

Resummation of large logarithms
(

αs lnM2
W /m2

b

)n

in the calculation of the decay rate is most conve-
niently performed after decoupling the electroweak
bosons and the top quark. In the resulting effective
theory, the relevant flavour-changing weak interac-
tions are given by a linear combination of dimension-
five and -six operators2

O1,2 = (s̄Γic)(c̄Γ
′

ib),
(current-current
operators)

O3,4,5,6 = (s̄Γib)
∑

q(q̄Γ
′

iq),
(four-quark
penguin operators)

O7 =
emb

16π2
s̄LσµνbRFµν , (photonic dipole

operator)

O8 =
gmb

16π2
s̄LσµνT abRGa

µν . (gluonic dipole
operator) (3)

One begins with perturbatively calculating their
Wilson coefficients Ci at the renormalization scale
µ0 ∼ (MW , mt). Next, the Renormalization Group
Equations (RGE) are used for the evolution of Ci

down to the scale µb ∼ mb/2. Finally, the operator
on-shell matrix elements are calculated at µb.

1 More recent contributions are discussed in Secs. 2–5.
2 The specific matrices Γi and Γ′

i can be found in Ref. [7].

The Wilson coefficient RGE are governed by
Anomalous Dimension Matrices (ADM’s) that are de-
rived from ultraviolet divergences in the Feynman di-
agrams with operator insertions. Around 20000 four-
loop diagrams with O1,2 insertions have been calcu-
lated in Ref. [8] to make the large logarithm resumma-
tion complete up to O

[

α2
s

(

αs lnM2
W /m2

b

)n]

, i.e. at
the Next-to-Next-to-Leading-Order (NNLO) in QCD.
Including such corrections is necessary to suppress the
theoretical uncertainty in Eq. (2) down to the level
of the experimental error in Eq. (1). The numerical
effect of the four-loop ADM’s on the branching ratio
amounts to around −4% for µb = 2.5 GeV. At present,
all the relevant Wilson coefficients Ci(µb) are known
at the NNLO [8, 9]. However, evaluation of the matrix
elements at this order is still in progress — see Sec. 4.

2. The global normalization factor

In order to reduce parametric uncertainties stem-
ming from the CKM angles as well as from the c- and
b-quark masses, one writes the branching ratio as fol-
lows [10]

B
(

B̄ → Xsγ
)

Eγ >E0

= B
(

B̄ → Xceν̄
)

exp

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2

×

×
6αem

π C
[P (E0) + N(E0)] , (4)

where αem = αon shell
em , and N(E0) denotes the

non-perturbative correction (see Sec. 5). The mc-
dependence of B̄ → Xceν̄ is accounted for by

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2 Γ
(

B̄ → Xceν̄
)

Γ
(

B̄ → Xueν̄
) , (5)

while P (E0) is defined by the perturbative ratio

Γ(b → Xsγ)Eγ>E0

|Vcb/Vub|2 Γ(b → Xueν̄)
=

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2 6αem

π
P (E0).

(6)
The NNLO expression for the phase-space factor
C (5) is a known function of mc/mb as well as non-
perturbative parameters that affect N(E0), too. All
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The current status of B̄ → Xsγ decay rate calculations is summarized. Missing ingredients at the NNLO level are
listed. The global normalization factor and non-perturbative effects are discussed. Arguments are presented that
results for the cutoff-enhanced perturbative corrections have been misused in Ref. [15] by applying them in the re-

gion Eγ ∈ [1.0, 1.6]GeV, which means that the corresponding numerical effect on B
(

B̄ → Xsγ, Eγ > 1.6GeV
)

is unreliable.

1. Introduction

The motivation for precision studies of radiative B
decays is well known. First, they are sensitive to new
physics loop effects that often arise at the same order
in the electroweak couplings as the leading Standard
Model (SM) contributions. Moreover, the inclusive
B̄ → Xsγ rate is well approximated by the perturba-
tively calculable radiative decay rate of the b-quark.
The CLEO [1], BELLE [2] and BABAR [3] measure-
ments have been combined by HFAG [4] to get

B
(

B̄ → Xsγ
)

exp
= (3.52 ± 0.23 ± 0.09)× 10−4 (1)

for Eγ > 1.6 GeV. The corresponding SM prediction
that was published two years ago1 reads [5]

B
(

B̄ → Xsγ
)

SM
= (3.15 ± 0.23) × 10−4. (2)

Its consistency with Eq. (1) provides strong constrains
on many extensions of the SM (see, e.g., Ref. [6]).

Resummation of large logarithms
(

αs lnM2
W /m2

b

)n

in the calculation of the decay rate is most conve-
niently performed after decoupling the electroweak
bosons and the top quark. In the resulting effective
theory, the relevant flavour-changing weak interac-
tions are given by a linear combination of dimension-
five and -six operators2

O1,2 = (s̄Γic)(c̄Γ
′

ib),
(current-current
operators)

O3,4,5,6 = (s̄Γib)
∑

q(q̄Γ
′

iq),
(four-quark
penguin operators)

O7 =
emb

16π2
s̄LσµνbRFµν , (photonic dipole

operator)

O8 =
gmb

16π2
s̄LσµνT abRGa

µν . (gluonic dipole
operator) (3)

One begins with perturbatively calculating their
Wilson coefficients Ci at the renormalization scale
µ0 ∼ (MW , mt). Next, the Renormalization Group
Equations (RGE) are used for the evolution of Ci

down to the scale µb ∼ mb/2. Finally, the operator
on-shell matrix elements are calculated at µb.

1 More recent contributions are discussed in Secs. 2–5.
2 The specific matrices Γi and Γ′

i can be found in Ref. [7].

The Wilson coefficient RGE are governed by
Anomalous Dimension Matrices (ADM’s) that are de-
rived from ultraviolet divergences in the Feynman di-
agrams with operator insertions. Around 20000 four-
loop diagrams with O1,2 insertions have been calcu-
lated in Ref. [8] to make the large logarithm resumma-
tion complete up to O

[

α2
s

(

αs lnM2
W /m2

b

)n]

, i.e. at
the Next-to-Next-to-Leading-Order (NNLO) in QCD.
Including such corrections is necessary to suppress the
theoretical uncertainty in Eq. (2) down to the level
of the experimental error in Eq. (1). The numerical
effect of the four-loop ADM’s on the branching ratio
amounts to around −4% for µb = 2.5 GeV. At present,
all the relevant Wilson coefficients Ci(µb) are known
at the NNLO [8, 9]. However, evaluation of the matrix
elements at this order is still in progress — see Sec. 4.

2. The global normalization factor

In order to reduce parametric uncertainties stem-
ming from the CKM angles as well as from the c- and
b-quark masses, one writes the branching ratio as fol-
lows [10]

B
(

B̄ → Xsγ
)

Eγ >E0

= B
(

B̄ → Xceν̄
)

exp

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2

×

×
6αem

π C
[P (E0) + N(E0)] , (4)

where αem = αon shell
em , and N(E0) denotes the

non-perturbative correction (see Sec. 5). The mc-
dependence of B̄ → Xceν̄ is accounted for by

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2 Γ
(

B̄ → Xceν̄
)

Γ
(

B̄ → Xueν̄
) , (5)

while P (E0) is defined by the perturbative ratio

Γ(b → Xsγ)Eγ>E0

|Vcb/Vub|2 Γ(b → Xueν̄)
=

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2 6αem

π
P (E0).

(6)
The NNLO expression for the phase-space factor
C (5) is a known function of mc/mb as well as non-
perturbative parameters that affect N(E0), too. All
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gion Eγ ∈ [1.0, 1.6]GeV, which means that the corresponding numerical effect on B
(

B̄ → Xsγ, Eγ > 1.6GeV
)

is unreliable.

1. Introduction

The motivation for precision studies of radiative B
decays is well known. First, they are sensitive to new
physics loop effects that often arise at the same order
in the electroweak couplings as the leading Standard
Model (SM) contributions. Moreover, the inclusive
B̄ → Xsγ rate is well approximated by the perturba-
tively calculable radiative decay rate of the b-quark.
The CLEO [1], BELLE [2] and BABAR [3] measure-
ments have been combined by HFAG [4] to get

B
(

B̄ → Xsγ
)

exp
= (3.52 ± 0.23 ± 0.09)× 10−4 (1)

for Eγ > 1.6 GeV. The corresponding SM prediction
that was published two years ago1 reads [5]

B
(

B̄ → Xsγ
)

SM
= (3.15 ± 0.23) × 10−4. (2)

Its consistency with Eq. (1) provides strong constrains
on many extensions of the SM (see, e.g., Ref. [6]).

Resummation of large logarithms
(
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)n

in the calculation of the decay rate is most conve-
niently performed after decoupling the electroweak
bosons and the top quark. In the resulting effective
theory, the relevant flavour-changing weak interac-
tions are given by a linear combination of dimension-
five and -six operators2

O1,2 = (s̄Γic)(c̄Γ
′
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(current-current
operators)

O3,4,5,6 = (s̄Γib)
∑
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iq),
(four-quark
penguin operators)

O7 =
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s̄LσµνbRFµν , (photonic dipole

operator)

O8 =
gmb

16π2
s̄LσµνT abRGa

µν . (gluonic dipole
operator) (3)

One begins with perturbatively calculating their
Wilson coefficients Ci at the renormalization scale
µ0 ∼ (MW , mt). Next, the Renormalization Group
Equations (RGE) are used for the evolution of Ci

down to the scale µb ∼ mb/2. Finally, the operator
on-shell matrix elements are calculated at µb.

1 More recent contributions are discussed in Secs. 2–5.
2 The specific matrices Γi and Γ′

i can be found in Ref. [7].

The Wilson coefficient RGE are governed by
Anomalous Dimension Matrices (ADM’s) that are de-
rived from ultraviolet divergences in the Feynman di-
agrams with operator insertions. Around 20000 four-
loop diagrams with O1,2 insertions have been calcu-
lated in Ref. [8] to make the large logarithm resumma-
tion complete up to O

[

α2
s

(

αs lnM2
W /m2

b

)n]

, i.e. at
the Next-to-Next-to-Leading-Order (NNLO) in QCD.
Including such corrections is necessary to suppress the
theoretical uncertainty in Eq. (2) down to the level
of the experimental error in Eq. (1). The numerical
effect of the four-loop ADM’s on the branching ratio
amounts to around −4% for µb = 2.5 GeV. At present,
all the relevant Wilson coefficients Ci(µb) are known
at the NNLO [8, 9]. However, evaluation of the matrix
elements at this order is still in progress — see Sec. 4.

2. The global normalization factor

In order to reduce parametric uncertainties stem-
ming from the CKM angles as well as from the c- and
b-quark masses, one writes the branching ratio as fol-
lows [10]

B
(

B̄ → Xsγ
)

Eγ >E0

= B
(

B̄ → Xceν̄
)

exp

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2

×

×
6αem

π C
[P (E0) + N(E0)] , (4)

where αem = αon shell
em , and N(E0) denotes the

non-perturbative correction (see Sec. 5). The mc-
dependence of B̄ → Xceν̄ is accounted for by

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2 Γ
(

B̄ → Xceν̄
)

Γ
(

B̄ → Xueν̄
) , (5)

while P (E0) is defined by the perturbative ratio

Γ(b → Xsγ)Eγ>E0

|Vcb/Vub|2 Γ(b → Xueν̄)
=

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2 6αem

π
P (E0).

(6)
The NNLO expression for the phase-space factor
C (5) is a known function of mc/mb as well as non-
perturbative parameters that affect N(E0), too. All



B̅ → Xs l+ l- @ NNLO
For b→s l+ l- Q7, Q9, Q10 contribute and the effective 

Hamiltonian [Bobeth et. al.] and matrix elements [Asatryan et.al, 
Ghinculov et. al., Huber et. al.] are known at NNLO+EW/QED

For low q2 region the expansion is similar to b→s γ

7

experimentally there is a cut on MX < M: suppressed shape 
function [Tackmann et. al. `08] & NNLO hard scattering [Beneke et. al. `10]
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and
ACP (B → Xdγ) =

(
−10.2 +2.4

−3.7

∣∣∣mc
mb

± 1.0CKM
+2.1
−4.4

∣∣∣
scale

)
× 10−2. (22)

The two CP asymmetries are connected by the relative CKM factor λ2 [(1−ρ)2+
η2]. The small SM prediction for the CP asymmetry in the decay B → Xsγ is a
result of three suppression factors: (a) αs to have a strong phase; (b) CKM
suppression of order λ2; and (c) GIM suppression of order (mc/mb)2, which
reflects that in the limit mc = mu, any CP asymmetry in the SM would vanish.

On the basis of CKM unitarity, one can derive the following U -spin relation
between the un-normalized CP asymmetries (175):

[
Γ(B → Xs γ)− Γ(B → Xs γ)

]
+

[
Γ(B → Xd γ)− Γ(B → Xd γ)

]
= 0 (23)

U -spin breaking effects can be estimated within the HME (even beyond the par-
tonic level), so one arrives at the following prediction for the total (or untagged)
B → Xs+dγ asymmetry (176,177):

|∆B(B → Xsγ) +∆B(B → Xdγ)| ∼ 1 · 10−9 . (24)

Because this null test is based on the CKM unitarity, it represents a clear test
for new CP phases beyond the CKM phase (176,177). NP sensitivities of direct
CP asymmetries have been analyzed (174,55).

Inclusive B → Xs!
+!− The decay B → Xs&+&− is particularly attractive

because it offers several kinematic observables. The angular decomposition of the
decay rate provides three independent observables, HT , HA and HL, from which
one can extract the short-distance electroweak Wilson coefficients that test for
NP (178):

d3Γ

dq2 dz
=

3

8
[(1 + z2)HT (q

2) + 2(1 − z2)HL(q
2) + 2zHA(q

2)] . (25)

Here z = cos θ!, θ! is the angle between the negatively charged lepton and the
B meson in the center-of-mass frame of the dilepton system, and q2 is the dilep-
ton mass squared. HA is equivalent to the forward-backward asymmetry, and
the dilepton-mass spectrum is given by HT + HL. The observables depend on
the Wilson coefficients C7, C9 and C10 in the SM. The present measurements
of the B → Xs&+&− already favor the SM-sign of the coefficient C7, which is
undetermined by the B → Xsγ mode (179).

As discussed above, these observables are dominated by perturbative contribu-
tions in the perturbative low- and high-q2 windows which are below (1 GeV2 <
q2 < 6 GeV2), and above (q2 > 14.4 GeV2) the cc resonances, respectively. The
present predictions are based on the perturbative calculations to NNLL preci-
sion in QCD and to NLL precision in QED (see Section 2.2). For the branching
fraction in the low-q2 region one arrives at (89)

B(B → Xs&
+&−)low =

{
(1.59 ± 0.11) × 10−6 (& = µ)
(1.64 ± 0.11) × 10−6 (& = e) ,

(26)

and for the high-q2 region, one arrives at (90)

B(B → Xs&
+&−)high =

{
2.40 × 10−7 × (1+0.29

−0.26) (& = µ)

2.09 × 10−7 × (1+0.32
−0.30) (& = e) .

(27)
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As suggested in Ref. (108), normalizing the B → Xs!+!− decay rate in the high-
q2 region to the semileptonic B → Xu!ν decay rate with the same q2 cut (Eq. 14),
significantly reduces the nonperturbative uncertainties (90):

R(q̂20 = 14.4GeV2) =
{
2.29 × 10−3 × (1± 0.13) (! = µ)
1.94 × 10−3 × (1± 0.16) (! = e) .

(28)

The value of q20 for which the forward-backward asymmetry vanishes,

(q20)[Xs!
+!−] =

{
(3.50 ± 0.12) GeV2 (! = µ)
(3.38 ± 0.11) GeV2 (! = e) ,

(29)

is one of the most precise predictions in flavor physics and also determines the
relative sign and magnitude of the coefficients C7 and C9 (90). However, unknown
subleading nonperturbative corrections of order O(αsΛ/mb), which are estimated
to give an additional uncertainty of order 5%, have to be added in all observables
of the B → Xs!+!− mode (see Section 2.3).

In all predictions, it is assumed that there is no cut in the hadronic mass
region (see Section 2.4). Furthermore, after including the NLL QED matrix
elements, the electron and muon channels receive different contributions due to
terms involving ln(m2

b/m
2
! ) (see Section 2.2). This is the only source of the

difference between these two channels. All collinear photons are assumed to be
included in the Xs system, and the dilepton invariant mass does not contain any
photons; in other words, q2 = (p!+ + p!−)

2. Present experimental settings at
the B factories are different, and therefore the theoretical predictions have to be
modified (87).

This difference in the settings also means that deviations from the SM predic-
tion (RSM

Xs
= 1) in the muon-electron ratio

RXs = Γ(B → Xsµ
+µ−)[q2a, q2b ]

/Γ(B → Xse
+e−)[q2a, q2b ]

(30)

can result from a different treatment of collinear photons in the two modes. This
ratio is interesting because it is sensitive to the neutral Higgs boson of two-Higgs-
doublet models at large tan β (180,181), which is also valid in corresponding ratios
RK(∗) of exclusive modes: In the SM, one finds RK = 1, as well as RK∗ = 0.75
when integrated over all q2, including Me+e− < 2mµ.

4.2 Exclusive Penguin Decays

The exclusive penguin modes offer a larger variety of experimentally accessible
observables than do the inclusive ones, but the nonperturbative uncertainties in
the theoretical predictions are in general sizable.

B → K∗γ and B → ργ The large hadronic uncertainties, which arise from
the nonperturbative input of the QCDF formula and from our limited knowledge
of power corrections, do not allow precise predictions of the branching fractions of
exclusive modes. However, within ratios of exclusive modes such as asymmetries,
parts of the uncertainties cancel out and one may hope for higher precision.

The ratio Rth(ργ/K∗γ) [and similarly Rth(ωγ/K∗γ)] is given by (148,149,150,
151).

Rth(ργ/K
∗γ) =

Bth(B → ργ)

Bth(B → K∗γ)
= Sρ

∣∣∣∣
Vtd

Vts

∣∣∣∣
2 (M2

B −m2
ρ)

3

(M2
B −m2

K∗)3
ζ2 [1 +∆R(ρ/K∗)] ,

(31)

[Hurth, Nakao `11]

as in the inclusive case, the authors of [37] implicitly assumed that this shape function
somehow factorizes into the local heavy-quark effective theory matrix element λ2 and
the leading-power shape function. It is not clear to us how this simplification can be
justified and it is likely not even parametrically correct. Nevertheless, in the absence of
better information we follow the treatment of [37] and include the 1/m2

c power correc-
tions into the C incl

i . This results in a shift of the asymmetry zero by +0.07GeV2, which is
included in (74), (75), and below in (76). To be conservative we assign another 0.1GeV2

uncertainty to this estimate and add it in quadrature with the other power correction
uncertainty.

We are now in the position to present our final NNLO result based on the numerical
input parameters and their respective intervals as specified in Table 2. We then find

q 2
0 =

[

(3.34 . . . 3.40) +0.04
−0.13 µ ± 0.08mb

+0.05
−0.04 mc ± 0.14SF ± 0.14 〈 p+X〉

]

GeV2

=
[

(3.34 . . . 3.40)+0.22
−0.25

]

GeV2 for mcut
X = (2.0 . . . 1.8)GeV . (76)

The error estimate is computed as follows: The range of scale variation is taken to be
2.3 GeV < µ < 9.2 GeV, and we vary the scale in the C incl

i and in R⊥ independently to
account conservatively for the absence of the O(α2

s) correction to the C incl
i . The input

quark mass is the bottom mass in the potential-subtracted (PS) scheme [38], see Table 2.
The pole mass and MS mass used in intermediate expressions are computed using the
one-loop conversion factors resulting in mpole

b = 4.78GeV and m (mPS
b ) = 4.36GeV,

respectively, when mPS
b (2GeV) = 4.6GeV. The dependence on the charm quark mass

enters through the matrix elements of the current-current operators. The error labelled
“SF” is connected with the subleading shape function effects as discussed above. Finally
we have added an uncertainty estimate for the approximation made by pulling out the
slowly varying function h[0]

A (q20 , p
+
X) out of the p

+
X integral in (70). We estimate this error

rather generously by varying 〈p+X〉 from pcutX /4 to 3pcutX /4. The total error is obtained by
adding all these uncertainties in quadrature.

We note that the value of the asymmetry zero in semi-inclusive b → s#+#− decay
is significantly smaller than for the exclusive case [29], where spectator scattering is
responsible for a positive shift as is the fact that in this case 〈p+X〉 = 0 in (73). On the
other hand the semi-inclusive zero is in the same region as in the inclusive case [39],
where virtual effects together with hard gluon bremsstrahlung encoded in functions ω710

and ω910 [40] also induce a negative shift on the zero.

6 Conclusion

In this paper we completed the two-loop matching calculation for heavy-to-light currents
from QCD onto SCET for the complete set of Dirac structures. These matching co-
efficients enter several phenomenological applications, of which we have discussed their
effects on heavy-to-light form factor ratios, exclusive radiative and semi-leptonic decays,
as well as the inclusive decay B̄ → Xs#+#− in the shape-function region. The two-loop
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reduces q0



 B̅ → Xs υ ̄ υ & B̅ → K(*) υ ̄ υ

Inclusive mode cleanest BR(B0 → X υ ̄ υ)=2.7(2) ·∙  10-5 [Altamanshofer et. 

al.] – with a 5% residual theory error, but experimentally hardest

Exclusive mode suffer from the uncertainty in the form factors

For the K+ background from B+ → τ+ υ – 3-4% uncertainty [Kamenik, Smith]

Normalisation to K → π l l reduces uncertainty clean [Bartsch et. al.]

What will we learn beyond the Z-Penguin with 20% exp accuracy?
→ Constraints on extra light new (bs)-coupling particles 
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Conclusion

Super flavour factories: plenty observables

Inclusive modes are at least as precise as the exclusive ones

different new physics sensitivity & test of theoretical methods

potentially new channels e.g. missing energy are possible 
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