

Simona Imperio

Climatic control and population dynamics: the case of Mediterranean ungulates and Alpine grouses

Population dynamics analysis

Useful to detect key factors driving population fluctuations (and key life cycle periods), in order to:

introduce detected variables in management decisions (e.g. hunting quotas)

promote conservation of sites used

during the most vulnerable periods (e.g. breeding time)

Why long term time series?

AND A PHIL

Available data sets are often represented by indexes of population density

Prone to observation errors

Some mechanisms operate at lagged densities

Cycles with periods of some decades in ungulates (up to 30-40 years: McLaren & Peterson, 1994; Ogutu & Owen-Smith, 2005)

Study area: Preserve of Castelporziano 48 km² Roma

- In 1872 the Estate was purchased by the Italian government and assigned to the King.
- In 1946 the Estate was assigned to the President of Republic.
- In 1976 hunting was forbidden in the area.
- In 1999 Castelporziano became a Natural Reserve.

The ungulates:

Capreolus capreolus italicus ♀-♂ 18-20 kg Mating in July-August 2 fawns in May-June

Dama dama

 \bigcirc 50 kg, \bigcirc 80-90 kg Mating in September-October

1 fawn in May-June

Cervus elaphus ♀ 110 kg, ♂ 200 kg Mating in September-October 1 fawn in May-June

Sus scrofa majori

♀ 50-70 kg, ♂ 60-90 kg
Mating in December-January
2-6 piglets in April-May

Boselaphus tragocamelus ♀ 170 kg, ♂ 240 kg Mating in December-March (?) 2-3 kids in August-October(?)

Time series:

Year

The drives:

- ALA

1087 hunting drives

Density estimates =

n. killed animals

driven area

Fallow deer

Roe deer

Wild boar

Red deer

Nilgai

Data validation

Counts: wild boar

Annual counts

Density estimates

Meteorological data

Land use

Mixed Oak woods Mediterranean maquis Cork oak woods Pine plantations Other plantations Agricultural fields Pastures and open areas

Population models

Density dependence

"The tendency of per capita growth rates to decrease when population size is large and increase when it is small" (Wolda and Dennis 1993)

Stronger density dependence in Republican period than in the Royal period

No lagged density dependence

Climate forcing

Ibex in the Alps (Jacobson et al. 2004)

Ungulates in South Africa (Månsson et al. 2007)

Climate forcing

Climate: Gaussen Index

GI = P - 2T

Spring – Glsp (March-May)

Summer – Glsu (June-August)

Climate forcing

Climate: Gaussen Index

GI = P - 2T

SPECIES	MODEL	ΔR ²	
Roe deer:	dens _{t-1} (–) + GIsp _{t-1} (+)	0.05	
Wild boar:	dens _{t-1} (–) + Glsp _t (+)	0.02	
Deer:	dens _{t-1} (–) + Glmj _t (–)		
and the second			

Multiple models

Royal period			Republican period		
	Fallow deer R ² =0.51	$\frac{x_{t-1}(\text{fallow d}) + x_{t-1}(\text{wild b}) + x_{t-1}(\text{nilgai}) + PP$	Fallow deer $R^2=0.44$ $R^2=0.44$ $R^2=0.44$ $R^2=0.44$ $R^2=0.44$		
	Roe deer R ² =0.52	$x_{t-1}(\text{roe d}) + x_{t-1}(\text{nilgai}) + x_{t-1}(\text{fallow d}) + Glsp_{t-1} + NW + PP$	Roe deer x_{t-1} (roe d) + R ² =0.22 HE		
** *	Wild boar R ² =0.52	x_{t-1} (wild b) + x_{t-1} (roe d.) + x_{t-1} (red d) + HE + NW	Wild boar $R^2=0.55$ $R^2=0.55$ $R^2=0.55$ $R^2=0.55$ $R^2=0.55$		
	Red deer R ² =0.46	$\frac{x_{t-1}(\text{red d}) + x_{t-1}(\text{nilgai})}{x_{t-1}(\text{nilgai})}$			
	Nilgai R ² =0.45	x _{t-1} (nilgai) + HE + NW			
Positive e	ffect	$x = \ln(density)$	NW = Natural woods		

Negative effect

x = ln(density) HE = hunting effort NW = Natural woods PP = Pine plantations \checkmark

- Density dependence is present in all the species, but it is stronger during the second period (< # species).
- Competition and facilitation affect foraging behaviour, but their effect on population dynamics was never demonstrated before.
 - Spring-summer drought have some negative effect on fecundity of deer and on piglets survival.
 - Heavy rainfall in May-June reduce fawns survival.
 - At present, climate appears to play a minor role with respect to density dependence on the dynamics of Mediterranean ungulates.
 - Drawbacks: no population structure; no data on food availability independent from climate (e.g. masting).

Time series:

Count data

Spring counts (1988-2008)

- ✓ 28-45 vantage points (mean 35,6±1,9)
- ✓ 4-5 replicates

Count data

Detectability of animals can be affected by different factors

N-mixture models for replicated counts (Royle A., 2004)

The number of counted animals at site *i* at time *t* (*n_{it}*) is a binomial random variable:

 n_{it} ~ Binomial (N_i , p)

where N_i = number of available individuals at site *i* and p = detection probability

 N_i is a random effect with a certain distribution f, e.g. Poisson distribution with mean λ:

f (Ν ; λ)

N-mixture models for replicated counts (Royle A., 2004)

• λ is affected by covariates (x_{ij} , j = 1, 2, ... r measured at site i):

$$\log(\lambda_i) = \beta_{0} + \sum_{j=1}^r x_{ij}\beta_j$$

• also *p* can be affected by covariates:

$$logit(p_{ij}) = \alpha_0 + \sum_{j=1}^r x_{ij} \alpha_j$$

• likelihood function:

$$L(\boldsymbol{p}, \boldsymbol{\lambda} \mid \{\boldsymbol{n}_{it}\}) = \prod_{i=1}^{R} \left\{ \sum_{N_i = max, n_{it}}^{\infty} \left(\prod_{t=1}^{T} Bin(\boldsymbol{n}_{it}; N_i, \boldsymbol{p}) \right) f(N_i; \boldsymbol{\lambda}) \right\}$$

Abundance estimates

Results

Growth rate:

✓ Density dependence

✓ No harvest rate, inter-specific interaction, climate effect and masting

Results

Recruitment (juv/fem):

✓ Density dependence (roe deer – Allee effect?)

Results

Recruitment (juv/fem):

✓ Gisp_{t-1}

✓ Gisp_t

- Analyses of recent data confirm the ones of historical data (Republican period): growth rate is mainly function of density dependence, for all the species.
- Roe deer: a possible "Allee effect" threats the survival of the population.
 - Some environmental variables affect recruitment (spring drought, masting) but not growth rate.

Alpine Grouses: special adaptations to mountain climate

feathers with a secondary vexillum

feathered toes and corneous scales

well-developed caeca

Black grouse (Tetrao tetrix)

1991-2009

Number of leks Number of males per lek Number of single males

9 meteorological stations (Arpa Piemonte)

$y_t = \log(N_t / N_{t-1})$	Susa	Chisone	Sangone		
Totals	0.93 (<0.0001)	0.73 (0.001)	0.78 (<0.0001)		Significative coerence in
Susa		0.47 (0.05)	0.69 (0.001)	-	
Chisone			0.41 (0.09)		

Probable control by a common factor

1						
Model ID	Variables	р	R ²	AICc	Outliers	Excess
a, b, c ar Tot2(N) 1 and C	Ind <i>d</i> are parameters to be espective to f_{int} and f_{t-1} (1) be especially are the select end of f_{t-1} (1) are the select end of f_{t-1} and f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1} and f_{t-1} are the select end of f_{t-1} and f_{t-1	timated 0.001 riables,	0.82	-61.8	0.11	0.33
W _t is a ra Tot4 (X)	andom gaussian, zero-mean, logN , P - June _{t-1} (1) T _{int} - Dec _{t-1} (2)	temporally < 0.001	uncorrel 0.80	ated rando -59.6	om variable. 0.06	0.42

Density dependence

Lindström et al., 1997

Negative effect of rainfalls in June

Positive effect of temperature range in December

Summers et al., 2004 Ludwig et al., 2010 Klaus et al. 1990

Model ID	Variables	р	R ²	AICc	Outliers	Excess
Tot2 (N)	N , T _{int} - June _{t-1} (1) T _{int} - Dec _{t-1} (2)	< 0.001	0.82	-61.8	0.11	0.33
Tot4 (X)	logN , P - June _{t-1} (1) T _{int} - Dec _{t-1} (2)	< 0.001	0.80	-59.6	0.06	0.42

Orsiera Rocciavrè Natural Park

Black grouse: population projections (PROTHEUS model - A1B scenario)

Year

Caveats: - snow cover is not included in the populations models - indirect effects of climate change (e.g. modifications in vegetation cover)

Orsiera Rocciavrè Natural Park

Black grouse: population projections

(Ec-Earth model RCP 2.6, 4.5, 8.5 scenarios)

20% decrease

Model ID	1991-2009	2031-205	i0 (RCP 2.6)	2031-2050	(RCP 4.5)	2031-205	0 (RCP 8.5)
Tot1 - N	3.77±0.95	3.65±0.87	(2.76-4.80)	3.71±0.99 ((2.79-4.84)	3.61±0.90	(2.69-4.75)
Tot1 - X		3.69±0.81	(2.79-4.87)	3.75±0.98 ((2.83-4.97)	3.66±0.89	(2.76-4.84)
Tot2 - N		3.46±0.59	(2.67-4.42)	3.45±1.08 ((2.66-4.42)	3.38±1.14	(2.62-4.34)
Tot2 - X		3.46±0.55	(2.67-4.46)	3.58±1.04 ((2.79-4.63)	3.47±1.10	(2.68-4.49)
Tot3 - N		3.60±0.50	(2.75-4.67)	3.43±0.90 ((2.62-4.47)	3.44±0.78	(2.61-4.49)
Tot3 - X		3.30±0.54	(2.54-4.28)	3.40±1.03 ((2.63-4.38)	3.17±1.03	(2.45-4.08)
Tot4 - N		3.47±0.49	(2.68-4.47)	3.32±0.94 ((2.55-4.27)	3.27±0.79	(2.54-4.20)
Tot4 - X		3.47±0.44	(2.70-4.45)	3.40±0.86 ((2.65-4.38)	3.33±0.73	(2.58-4.27)
Su1 - N	4.83±1.52	4.57±1.38	(2.92-6.96)	4.68±1.59 ((3.01-7.11)	4.63±1.47	(3.00-7.05)
Su1 - X		4.67±1.27	(3.12-6.98)	4.83±1.55 ((3.23-7.22)	4.67±1.39	(3.14-6.97)
Su2 - N		4.34±0.89	(2.79-6.49)	4.40±1.70 ((2.80-6.63)	4.37±1.71	(2.86-6.54)
Su2 - X		4.41±0.83	(2.95-6.59)	4.68±1.69 ((3.15-6.95)	4.57±1.61	(3.03-6.87)
Su3 - N		4.51±0.73	(2.95-6.76)	4.22±1.34 ((2.70-6.32)	4.21±1.15	(2.70-6.32)
Su3 - X		4.47±0.65	(3.07-6.58)	4.30±1.24 ((2.95-6.33)	4.31±1.12	(2.94-6.26)
Su4 - N		4.35±0.71	(2.85-6.52)	4.08±1.43 ((2.63-6.15)	4.06±1.15	(2.67-6.12)
Su4 - X		3.48±0.45	(2.70-4.48)	3.42±0.88	(2.66-4.39)	3.32±0.72	(2.58-4.27)
Ch1 - N	3.87±1.28	3.65±1.02	(2.45-5.33)	2.95±0.76	(1.93-4.42)	3.59±1.11	(2.40-5.30)
Ch1 - X		3.78±0.89	(2.71-5.26)	3.25±0.80 ((2.33-4.51)	3.75±1.00	(2.69-5.24)
Ch2 - N		3.23±0.87	(1.99-5.07)	2.34±0.65	(1.34-3.88)	3.09±0.85	(1.91-4.88)
Ch2 - X		3.57±0.71	(2.46-5.17)	3.08±0.54	(2.13-4.50)	3.50±0.69	(2.41-5.10)
Ch3 - N		3.63±0.85	(2.43-5.35)	3.22±1.07 ((2.13-4.82)	3.56±1.05	(2.38-5.29)
Ch3 - X		3.71±0.69	(2.66-5.14)	3.47±1.08 ((2.50-4.84)	3.72±0.89	(2.66-5.18)
Ch4 - N		3.24±0.86	(2.08-4.95)	2.79±0.77	(1.72-4.33)	3.07 ±0.77	(1.99-4.71)
Ch4 - X		3.55±0.69	(2.49-5.06)	3.28±0.68 ((2.30-4.66)	3.47±0.63	(2.42-4.94)
Sa1 - N	2.49±0.70	2.13±0.34	(1.50-3.03)	1.99±0.34	(1.37-2.85)	2.00 ±0.50	(1.39-2.86)
Sa1 - X		2.14±0.32	(1.53-2.97)	2.01±0.29	(1.45-2.78)	2.04 ±0.44	(1.46-2.81)
Sa2 - N		2.40±0.50	(1.60-3.51)	2.44±0.64 ((1.64-3.55)	2.44±0.58	(1.64-3.54)
Sa2 - X		2.40±0.47	(1.65-3.50)	2.49±0.63 ((1.72-3.65)	2.46±0.58	(1.68-3.55)
Sa3 - N		2.25±0.36	(1.61-3.10)	2.27±0.63 ((1.62-3.12)	2.19±0.68	(1.57-3.02)
Sa3 - X		2.24±0.34	(1.66-3.03)	2.30±0.59 ((1.69-3.12)	2.23±0.64	(1.65-3.04)
Sa4 - N		2.19±0.33	(1.54-3.10)	2.11±0.49 ((1.47-2.97)	2.06±0.49	(1.44-2.90)
Sa4 - X		2.19±1.56	(1.58-3.03)	2.15±0.46 ((1.56-2.98)	2.08±0.45	(1.50-2.86)

Black grouse (*Tetrao tetrix*)

Number of males (spring) Breeding success (summer) Parasite load

1996-2012

 6 meteorological stations (Arpa Piemonte)

No correlation between the two areas (p=0.42)

(mountain ridge > 2.300 m)

Highly significant correlation between the two areas (p=0.0003)

Ascaridia sp.

Capillaria sp.

Selected model (detrended data):

density dipendence -+ P (April-May)_{t-1} -+ T_{max} (April-May)_{t-1} +

p<0.0001 R²=0.81

Prevalence and intensity of helminth parasites!

Selected model (detrended data):

density dipendence – + P (April-May)_{t-1} – + T_{max} (April-May)_{t-1} + p<0.0001 R²=0.81

Prevalence and intensity of helminth parasites!

Why the two areas are so different?

-1.0 47.7 96.5 145.2 193.9242.6291.4 340.1

Spring observations in Veglia:

Mean altitude: 1950,4 m Aspect:

Frequency Distribution

Rock ptarmigan (Lagopus mutus helveticus)

1996-2011

Number of males

 6 meteorological stations (Arpa Piemonte)

Selected model (detrended data):

density dipendence -+ P (Feb 1-15)_t + + T_{mean} (Apr 15-30)_t p<0.0001 R²=0.91

Mismatch between snowmelt and moult?

Rock ptarmigan: population projections (PROTHEUS - A1B scenario)

Year

Thank you for your attention

and thanks to:

Osservatorio per gli Ecosistemi Mediterranei

Collegio Romano

Regione and ARPA Piemonte

Stefano Focardi, Antonello Provenzale, Ramona Viterbi

Park rangers and all the volunteers involved in the censuses