
Status of the CLIC Conceptual Design Report -CLIC energy staging-

Angela Lucaci-Timoce, on behalf of the CLIC detector and physics study

Outline

Introduction

Possible scenarios for the CLIC energy staging

Estimates of energy consumption

Cost estimates of CLIC accelerator and detectors

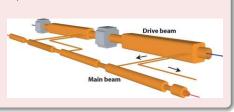
- Results of benchmark studies
 - Higgs
 - Top quark
 - SUSY

6 Summary and outlook

CLIC Conceptual Design Report (CDR)

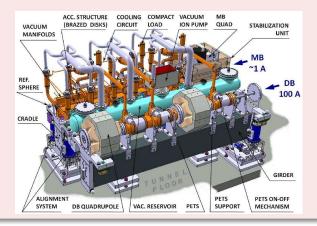
Volume 1	A Multi-TeV Linear Collider based on CLIC Technology: CLIC Conceptual Design Report	Cern edms
Volume 2	Physics and Detectors at CLIC: CLIC Conceptual Design Report	► arXiv:1202.5940
Volume 3	The CLIC Programme: towards a staged e ⁺ e ⁻ Linear Collider exploring the Terascale	► arXiv:1209.2543

Input to the European strategy for particle physics (September 2012, Krakow, Poland)

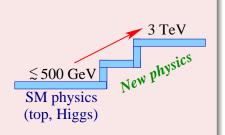

From the CLIC group: From the Linear Collider community (ILC and CLIC): CLIC e⁺e⁻ Linear Collider Studies

▶ arXiv:1208.1402

The Physics Case for an e^+e^- Linear Collider



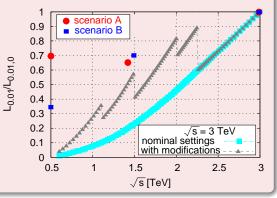
- Novel two-beam acceleration with normal conducting copper cavities at high frequency (12 GHz) and high accelerating fields (100 MV/m)
 → demonstrated in a dedicated test facility, CTF3, at CERN (details in Volume 1)
- Main beam: consists of the colliding e^+/e^- beams
- Drive beam: runs parallel to the main beam
 - consists of a high intensity electron beam which generates the RF power necessary for acceleration


CLIC module

- Basic building block of the main beam: CLIC module
- Length: 2 m (small for reasons of alignment and stability)
- Design might change, but it already has all the necessary ingredients (accelerator structures, supports, quadrupoles, cooling, etc.)

CLIC energy staging (1)

- CLIC ultimate goal: explore physics up to the TeV scale
 - direct searches for production of new particles
 - sensitivity to effects of new physics via precision measurements
- CLIC can be operated in **energy stages**, from a few hundred GeV to the maximum 3 TeV centre-of-mass energy
- Advantages:
 - allows to have first physics results earlier (top quark physics, Higgs sector)
 - discovery potential over a wide range of energies
 - precision measurements of possible new states previously discovered at LHC

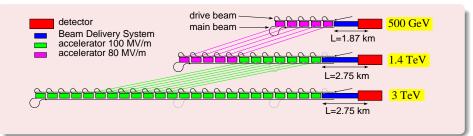


stretches the budget

\Rightarrow CLIC operation in stages maximises the physics potential

CLIC energy staging (paranthesis)

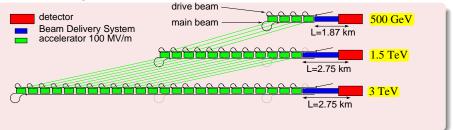
- Can we start with the 3 TeV design and go to low energies?
- To reduce the collision energy significantly, the drive beam current needs to be reduced
- It is possible, but reduces the luminosity considerably
- Can be partially recovered by an intelligent use of the drive beam generation complex (pulse length, etc.) but not enough
 ⇒ a retuning of the machine is necessary to optimise the luminosity



CLIC energy staging (3)

- The optimal choice of the actual energy stages will depend on the physics scenario, driven by 8 TeV + 14 TeV LHC results
- Next: present 2 examples of possible staging scenarios (from CLIC CDR volume 3)
 - scenario A: optimised for luminosity at 500 GeV
 - scenario B: cost optimised for the total project cost
- Both scenarios:
 - $\bullet\,$ consist of 3 stages (first at 500 GeV, second at 1.4/1.5 TeV, and the third stage at 3 TeV)
 - first the tunnel for the 500 GeV stage is built and the machine installed
 - while operating at 500 GeV, continue construction to full length

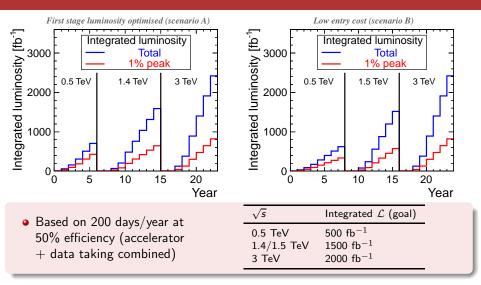
Staging scenario A


- Scenario optimised for luminosity at 500 GeV
- Upgrade sketch: couloured lines indicate the required movement of sectors from one stage to the next

- Stage 3: replacing the 80 MV/m structures with 100 MV/m ones allows to reach 3 TeV
 - $\bullet\,$ Alternatively, one could keep the 80 MV/m structures, resulting in 2.9 TeV only

Staging scenario B

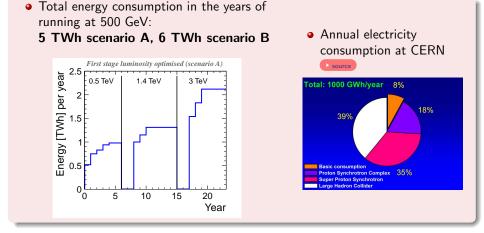
- Cost optimised for the total project cost
- Upgrade sketch: couloured lines indicate the required movement of sectors from one stage to the next


- **Stage 1**: high gradient structures used (100 MV/m), but only approximately half the luminosity compared to the same stage of scenario A
 - Iuminosity could be increased by increasing the repetition rate of the whole complex, or by generating a longer drive beam pulse ⇒ needs further investigation
- Stage 2: uses a design for the beam delivery system scaled down from 3 TeV
- This scenario can re-use all structures up to 3 TeV

• Red: scenario A (optimised for luminosity at 500 GeV)

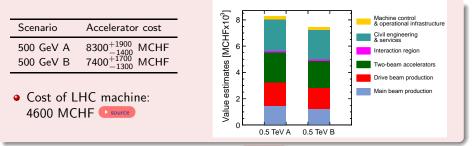
• Blue: scenario B (cost optimised for the total project cost)

Parameter	Symbol	Unit	1	Stages 2	3
Centre-of-mass energy Repetition frequency Number of bunches per train Bunch separation	$\sqrt{s} f_{rep} \ n_b \ \Delta_t$	GeV Hz ns	500 50 <mark>354/312</mark> 0.5	1400/1500 50 312 0.5	3000 50 312 0.5
Total luminosity Luminosity above 99% of \sqrt{s}	\mathcal{L} $\mathcal{L}_{0.01}$	$\frac{10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}}{10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}}$	2.3/1.3 1.4/0.7	3.2/3.7 1.3/1.4	5.9 2


Integrated luminosity

 First stage takes 2 years longer in scenario B, but second stage is 1 year shorter ⇒ total difference between scenarios A and B is only 1 year

Estimates of energy consumption

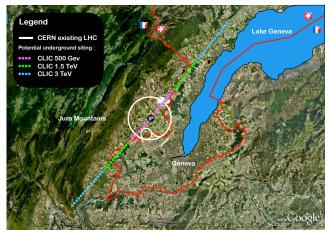

Assume 150 days per year of normal operation at nominal power

 Several paths for saving power/energy have been identified and are under investigations

Cost estimates of the CLIC accelerator

- Calculated for the **500 GeV stage** of CLIC, in Swiss francs (CHF) \rightarrow including all industrial contracts
- Further stages will be the object of separate upgrade projects (4 MCHF/GeV to go from stage 1 to stage 2 in scenario B)

- There are over 100 billionaires on the Forbes list that worth each alone more than 8300 MCHF
- - devices and techniques to do basic research which find other applications (e.g. crystal detectors in medical imaging)
 - www (invented at CERN) generates 5% of the sales of large companies

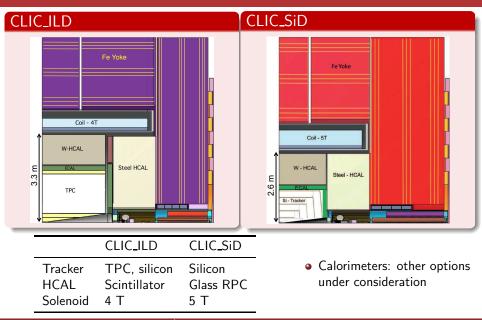

Expressed in FTE (*full time equivalent*): number of working hours per year
Derived from LHC experience: ~1.9 FTE · year/MCHF

-	Scenario	Labour estimate	
-		15700 FTE · year 14100 FTE · year	
•	40% scientifi	cientific universities c and engineering per	
 •	60% technica	al and execution	

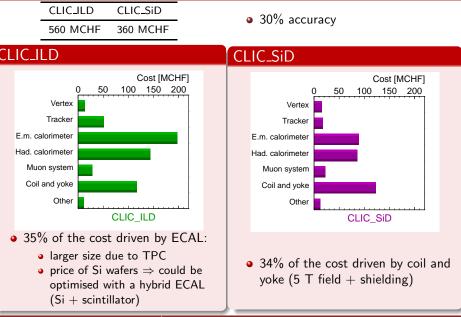
• Similar number for the two options, although costs are different

Possible site for CLIC


• Example of CLIC implementation underground near CERN


• The site specifications do not constrain the implementation to this location

• Final site authorisations to be established during the Project Preparation Phase (2017–2022)


Overview of a CLIC detector concept

CLIC detector concepts

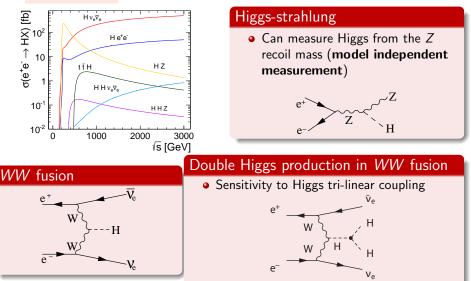
Cost estimates of CLIC detectors

Results of benchmark studies

Benchmark studies

detector performance studies using specific physics processes

• Studies performed using detailed GEANT4 simulations


• Realistic experimental conditions:

- luminosity spectrum at the different collision energies
- overlay of pile-up from $\gamma\gamma$ —hadrons background events taking into account the time structure of the CLIC beams
- Full event reconstruction (tracking, application of particle flow algorithms with timings cuts and flavour tagging)

\sqrt{s}	Integrated luminosity
350/500 GeV 1.4 TeV	500 fb $^{-1}$ 1.5 ab $^{-1}$
3 TeV	2 ab^{-1}

Higgs production at CLIC

• $m_H = 125 \text{ GeV}$

• Higgs cross-sections for Higgs-strahlung and *WW*-fusion for $m_H = 125$ GeV

	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$ \begin{aligned} \sigma(e^+e^- \to ZH) \\ \sigma(e^+e^- \to H\nu_e\bar{\nu}_e) \\ \text{Int. } \mathcal{L} \\ \# ZH \text{ events} \\ \# H\nu_e\bar{\nu}_e \end{aligned} $	240 fb	129 fb	57 fb	13 fb	6 fb	1 fb
	8 fb	30 fb	75 fb	210 fb	309 fb	484 fb
	250 fb ⁻¹	350 fb ⁻¹	500 fb ⁻¹	1000 fb ⁻¹	1500 fb ⁻¹	2000 fb ⁻¹
	60000	45500	28500	13000	7500	2000
	2000	10500	37500	210000	460000	970000

- $\bullet \Rightarrow$ Can do complementary Higgs measurements by accessing a wide energy range
- CLIC Higgs studies done for $m_H = 120$ GeV because they started before LHC announcement of the discovery of a Higgs-like particle

Results of Higgs benchmark studies ($m_H = 120 \text{ GeV}$)

$\sqrt{s} = 350 \text{ GeV}$	$\sqrt{s} = 500 \text{ GeV}$
• Recoil mass distribution in $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- X$	 Recoil mass measurement cannot be done, too large uncertainties
250 + Input total - Fitted total 200 - Fitted signal 150 - Fitted background 100 - Hiter - Fitted background	(reduced momentum resolution of higher lepton energy, decreasing $\sigma(ZH)$) \Rightarrow explicitely reconstruct Higgs from 2 quarks decays: $e^+e^- \rightarrow ZH \rightarrow \nu \bar{\nu} q \bar{q}$
50 0 100 150 M _{recoil} [GeV]	5 800 600 5 800
 Possible due to clearly defined initial state (not possible at LHC) 	

 Mass and cross-section extracted from fit of recoil mass

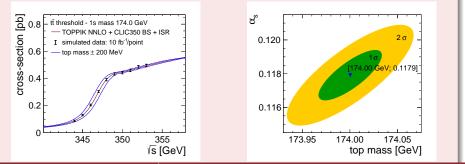
100 120 140 160 180 20 M_u [GeV]

200

Results of Higgs benchmark studies ($m_H = 120 \text{ GeV}$)

$\frac{\sqrt{s}}{(\text{GeV})}$	Process	Decay mode	Measured quantity	Unit	Generator value	Stat. error	Comment
			σ	fb	4.9	4.9%	Model
350	$ZH ightarrow \mu^+ \mu^- X$		Mass	GeV	120	0.131	independent, using Z-recoil
	SM Higgs		$\sigma \times \ BR$	fb	34.4	1.6%	ZH ightarrow q ar q q ar q
500	production	$ZH ightarrow qar{q}qar{q}$	Mass	GeV	120	0.100	mass reconstruction
500		$ZH, H\nu\bar{\nu}$	$\sigma \times \ BR$	fb	80.7	1.0%	Inclusive
		$ ightarrow u ar{ u} q ar{q}$	Mass	GeV	120	0.100	sample
1400		$H \to \tau^+ \tau^-$			19.8	<3.7%	
3000	WW fusion	$egin{array}{l} H ightarrow bar{b} \ H ightarrow car{c} \ H ightarrow \mu^+ \mu^- \end{array}$	$\sigma \times BR$	fb	285 13 0.12	0.22% 3.2% 15.7%	
1400 3000	WW fusion		Higgs tri-linear coupling <i>Вннн</i>			~20% ~20%	study still ongoing

 \Rightarrow CLIC enables a detailed exploration of the Higgs sector in various processes over the full energy range of the CLIC programme


Angela Lucaci-Timoce

21st FCAL collaboration workshop, November 2012, CERN

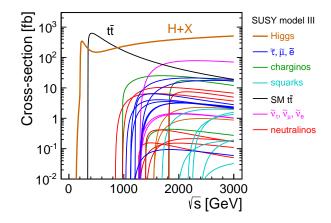
Results of top quark studies

- Top quark: interesting because it most strongly couples to the Higgs field, and may provide sensitivity to beyond Standard Model physics
- Measurement of top quark mass:
 - through direct reconstruction of top quarks from their products at energies above the production thresholds → potentially significant theoretical uncertainties
 - $\bullet\,$ through a scan of top-pair production threshold $\rightarrow\,$ theoretically well defined scheme

Top threshold scan

Results of top quark studies

\sqrt{s} (GeV)	Technique	Measured quantity	Integrated luminosity (fb $^{-1}$)	Unit	Generator value	Stat. error
		Mass	6 imes 10	GeV	174	0.021
350	350 Threshold scan	Mass α_S	10 imes 10	GeV	174 0.118	0.033 0.0009
500	Invariant mass	Mass	100	GeV	174	0.060

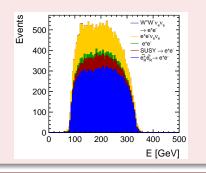


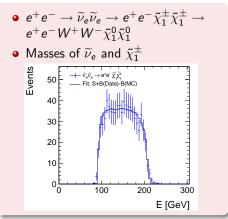
• Combination of ATLAS and CMS results

 $m_{top} = 173.3 \pm 0.5 \, ({
m stat}) \pm 1.3 \, ({
m syst}) \, {
m GeV}$

 \Rightarrow CLIC can do a precise measurement of the top quark mass in a threshold scan, as well as above threshold

Supersymmetry


 SUSY model III: a specific mSUGRA model with non-universal squark masses (compatible with current LHC data)


Results of SUSY studies: slepton masses (1.4 TeV)

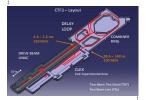
- Masses determined from the upper and lower edge of the energy distribution of reconstructed final-state leptons
- Signal events identified by high-energy leptons
- SM and SUSY background discrimination using a boosted decision tree based on variables of the di-lepton system

•
$$e^+e^-
ightarrow \widetilde{e}^+_R \widetilde{e}^-_R
ightarrow e^+e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$$

• Masses of \tilde{e}_R and $\tilde{\chi}_1^0$

Results of SUSY benchmarks (1.4 TeV)

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
		$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- \to \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\sigma \ { ilde \ell} \ { m mass} \ { ilde \chi}_1^{ m 0} \ { m mass}$	fb GeV GeV	1.11 560.8 357.8	2.7% 0.1% 0.1%
1.4	Sleptons production	$\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-} ightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$	III	$\sigma \ ilde{\ell} \ { m mass} \ ilde{\chi}_1^{ m 0} \ { m mass}$	fb GeV GeV	5.7 558.1 357.1	1.1% 0.1% 0.1%
		$\widetilde{ u}_{e}\widetilde{ u}_{e} ightarrow e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$	_	$\sigma \\ ilde{\ell} ext{ mass } \\ \widetilde{\chi}_1^\pm ext{ mass }$	fb GeV GeV	5.6 644.3 487.6	3.6% 2.5% 2.7%
1.4	Stau production	$\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \to \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	111	$\widetilde{ au}_1$ mass σ	GeV fb	517 2.4	2.0% 7.5%
1.4	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	111	$\widetilde{\chi}_1^\pm$ mass σ	GeV fb	487 15.3	0.2% 1.3%
1.1 <u>-</u>	Neutralino production	$\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \to h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\widetilde{\chi}_2^0$ mass σ	GeV fb	487 5.4	0.1% 1.2%

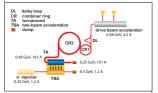

 \Rightarrow CLIC enables direct measurements of the properties of beyond Standard Model particles

Angela Lucaci-Timoce

Time line of the CLIC project

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

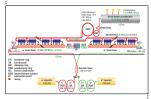

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

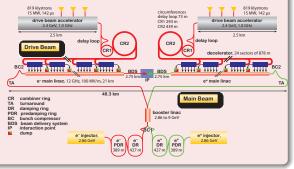

2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

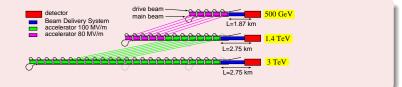

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

Summary

- CLIC conceptual design report finalised
- CLIC accelerator feasibility demonstrated
- Developed detector concepts which can do precision physics at CLIC
- Staged implementation of CLIC ⇒ maximised physics potential

CLIC layout at 3 TeV

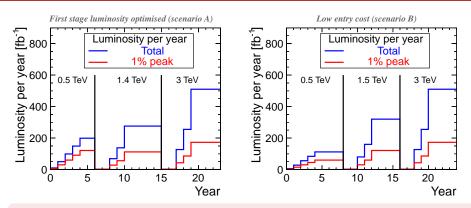


CLIC perspective

- 2016–2017: choice of the next energy frontier machine
- If CLIC: start construction 2022–2023

Backup slides

Staging scenario A: why luminosity optimised?



- The main linac components at 500 GeV are the same as at 3 TeV and can be re-used
- The accelerating structures: have the same length and almost the same input power as at 3 TeV, but a larger aperture and lower gradient ⇒ a larger bunch charge and slightly more bunches per train
 - \rightarrow a larger burner charge and signify more burners per
 - \Rightarrow more luminosity for the 500 GeV machine

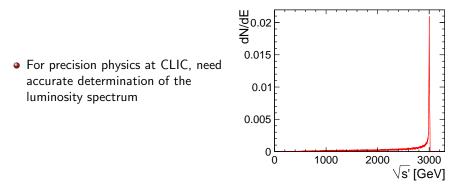
Parameter	Symbol	Unit	1	Stages 2	3
Centre-of-mass energy Repetition frequency Number of bunches per train Bunch separation	$\sqrt{s} f_{rep} \ n_b \ \Delta_t$	GeV Hz ns	500 50 <mark>354/312</mark> 0.5	1400/1500 50 312 0.5	3000 50 312 0.5
Total luminosity Luminosity above 99% of \sqrt{s}	\mathcal{L} $\mathcal{L}_{0.01}$	$\frac{10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}}{10^{34} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}}$	2.3/1.3 1.4/0.7	3.2/3.7 1.3/1.4	5.9 2

Angela Lucaci-Timoce

Luminosity per year

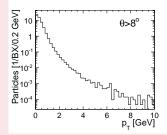
 Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

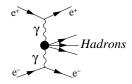
• Luminosity ramp-up for scenario A:

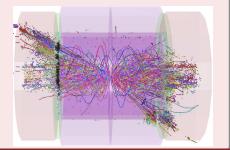

Stage	Year 1	Year 2	Year 3	Year 4	Year 5
1	5%	25%	50%	75%	100%
2 and 3	25%	50%	100%	100%	100%

CLIC luminosity spectrum

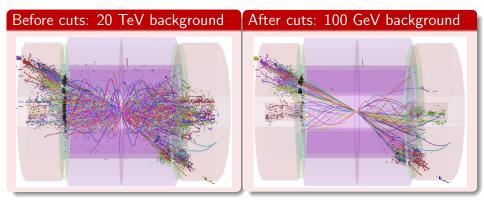
• Due to intense electromagnetic interactions of the colliding beams, e^+/e^- may radiate a high energy photon before collision (beamstrahlung)


 \Rightarrow the centre-of-mass energy of the e^+/e^- collision $(\sqrt{s'})$ is less than the nominal centre-of-mass energy of the machine (\sqrt{s})


 \Rightarrow luminosity spectrum with a peak at \sqrt{s} (for collisions with no beamstrahlung) and a long tail towards lower energies


CLIC beam induced background

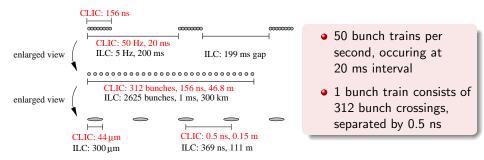
- CLIC: high beam energy, strong beam focusing and high bunch frequency (2 GHz) ⇒ photons are created which can interact to produce hadronic jets
- e⁺e⁻ → γγ → hadrons is the dominating background at CLIC (due to large angles, mainly affecting the central tracking volumes and the calorimeters)
- p_T spectra of particles from $e^+e^- \rightarrow \gamma\gamma \rightarrow hadrons$: mostly low p_T particles



 e⁺e⁻ → tt̄: about 20 TeV per bunch train due to background

Suppresion of beam-induced background

- Example: $e^+e^- \rightarrow t\bar{t}$
- Background can be reduced with combined p_T and timing cuts



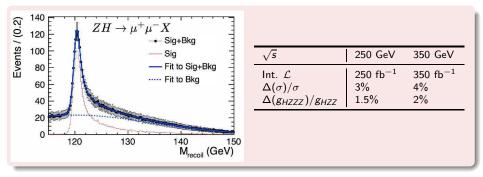
PFO-based tight timing cuts

Region	p_T range	time cut				
Photons						
$\begin{array}{c} central \\ cos\theta \leq 0.95 \\ forward \end{array}$	$\begin{array}{l} 1.0 \; {\rm GeV} \leq p_T < 4.0 \; {\rm GeV} \\ 0.2 \; {\rm GeV} \leq p_T < 1.0 \; {\rm GeV} \\ 1.0 \; {\rm GeV} \leq p_T < 4.0 \; {\rm GeV} \end{array}$	t < 2.0 ns t < 1.0 ns t < 2.0 ns				
$\cos heta > 0.95$	$0.2 \text{ GeV} \le p_T < 1.0 \text{ GeV}$ Neutral hadrons	<i>t</i> < 1.0 ns				
$\begin{array}{c} central \\ cos\theta \leq 0.95 \\ forward \\ cos\theta > 0.95 \end{array}$	$\begin{array}{l} 1.0 \; {\rm GeV} \leq p_T < 8.0 \; {\rm GeV} \\ 0.5 \; {\rm GeV} \leq p_T < 1.0 \; {\rm GeV} \\ 1.0 \; {\rm GeV} \leq p_T < 8.0 \; {\rm GeV} \\ 0.5 \; {\rm GeV} \leq p_T < 1.0 \; {\rm GeV} \end{array}$	t < 2.5 ns t < 1.5 ns t < 1.5 ns t < 1.0 ns				
Charged particles						
all	$\begin{array}{l} 1.0 \; {\rm GeV} \leq p_T < 4.0 \; {\rm GeV} \\ 0 \; {\rm GeV} \leq p_T < 1.0 \; {\rm GeV} \end{array}$	t < 2.0 ns t < 1.0 ns				

- Track-only minimum p_T : 0.5 GeV
- Track-only maximum time at ECAL: 10 nsec

CLIC bunch structure

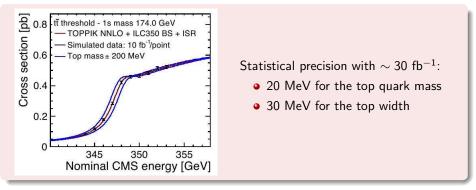
- Physics events are buried inside an abundance of overlapping background


Time window

- CLIC detectors readout continuosly (triger-less)
- Assume the entire bunch train of data is available for offline reconstruction
- If an interesting physics event is within a bunch train, assume the corresponding bunch crossing can be identified
- Data within a time window around this time would be passed for event reconstruction

Subdetector	Reconstruction window	hit resolution
ECAL	10 ns	1 ns
HCAL Endcaps	10 ns	1 ns
HCAL Barrel	100 ns	1 ns
Silicon Detectors	10 ns	$10/\sqrt{12}$ ns
ТРС	entire bunch train	n/a

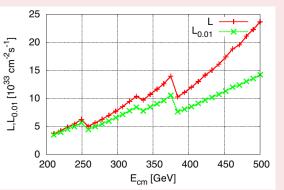
- Time window for the reconstruction in the calorimeters drivern by shower development times
- Time resolution of 1 ns for single calorimeter hits allows tighter cuts at the cluster level to further reduce the background


 Source: James E. Brau et al., The Physics Case for an e⁺e⁻ Linear Collider, input to the European strategy

CLIC: somewhat larger errors due to spread of luminosity spectrum

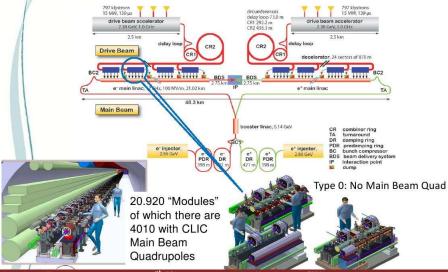
ILC ILD: Top threshold

 Source: James E. Brau et al., The Physics Case for an e⁺e⁻ Linear Collider, input to the European strategy



• CLIC: comparable results (analyses not identical)

Luminosity at lower energies


- From D. Schulte, CLIC Staged Design, talk given at LCWS 2012
- Use 500 GeV scenario A design
- Energy changed by gradient scaling
- Have to adjust bunch charge
- Can increase pulse length at certain energies
- More luminosity possible using extraction lines

- L: total luminosity
- $L_{0.01}$: luminosity above 99% of \sqrt{s}

CLIC and CLIC modules

 From Andreea Jeremie, Vibration Stabilization – Experimental Results, talk at PLCWS2012

Angela Lucaci-Timoce

21st FCAL collaboration workshop, November 2012, CERN