Update on testbeam data analysis using the integral method

Eliza Teodorescu, IFIN-HH FCAL Workshop, November 12-14, 2012

Overview

- Beam-test w.r.t. BeamCal
- My objective estimate SNR using integral method
- Considerations on signal shape function
- Signal
- Noise
- Signal to Noise Ratio = SNR
- Conclusions

2011 Beam-Test w.r.t. BeamCal

Goal - behavior of the complete multichannel BeamCal module in electron beam available at DESY

The collected data allow to determine the performance of the whole readout chain:

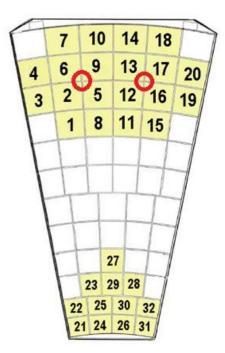
sensor pad uniformity

- 🕨 gain
- offset and noise
- readout electronics channel uniformity
- crosstalk between channels
- > charge sharing in area between sensor pads

response to electromagnetic shower development generated by tungsten plates included in front of tested module.

For this study: Investigated data collected with ASIC ADC (50 ns sampling) – un-synchronized to the beam clock

Compared results with synchronized data



Characterization of all 32 BeamCal sensor pads

- Estimate SNR using the integral of the recorded signal
 - Fit each signal with signal shape function extract baseline, amplitude, shaping time, starting time, peaking time (parameters of the signal shape function)
 - Calculate the integral of the signal and estimate SNR:

$$S/N = rac{Signal}{\sigma_{Pedestal}} = rac{MPV_{Integral[ns]}}{\sigma_{Pedestal}}$$

Baseline Stability

Dependence of the baseline with the temperature: > width > mean value

gnal shape function

$$s(t) = V_0 \frac{t}{\tau} e^{-t/\tau}$$

In root: p[0] + p[1] * (x - p[2]) / p[3] * TMath :: Exp (-(x - p[2]) / p[3])

- p[0] : y-offset
- p[1] : norm
- > baseline
- > V0 * amplification
- x-p[2]: relative time > p[2] = time when signal (fit) starts
 - > time constant (t), shaping time

Fitting parameters

Maximum:

- p[3] :

 $t = \tau$

> Amplitude:

 $A = s(t = \tau) = V_0 \exp(-1) \Rightarrow V_0 = A * e \rightarrow V_0 \text{ is "Norm"} = \text{Real Amplitude * e}$

\blacktriangleright Area under the curve (integral):

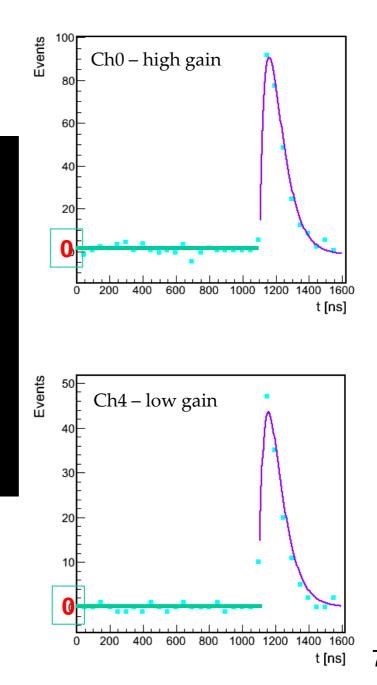
 $F(a) = V_0 \left(exp(-a/\tau)(a + \tau) - \tau \right)$, a = integration window

Fit Procedure and constraints

- 2. Subtract pedestal & CMN
- 3. Fit if:

Signal > 5 * $\sigma_{Pedestal}$ Relative Parameter Error < 50%

Search for fit_start (mean over 7 samples > $5 * \sigma_{Pedestal}$)



Integration window – graphical solution

Area under the curve (integral):

 $F(a) = VO(exp(-a/\tau)(a + \tau) - \tau)$

Range: {Start time (from the fit); Start time + a}

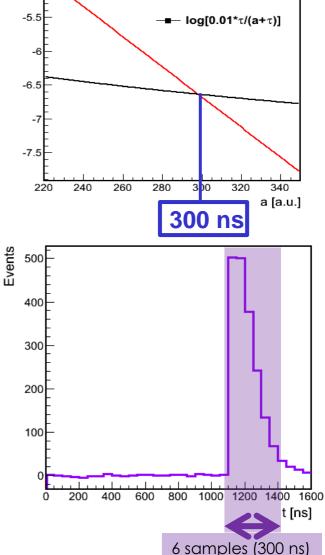
"a" = integration window: when area under the curve reaches 99% of it's (theoretical) maximum

Graphical solution - solve:

Eq. 1
$$\ln\left(\frac{0.01*t}{a+t}\right) = -\left(\frac{a}{t}\right)$$

a~300 ns: •Integration window ~6 samples •Same window used to calculate pedestal

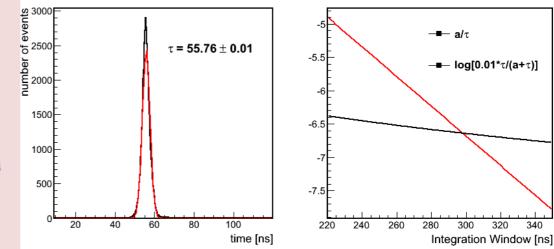
-5 — **a**/τ



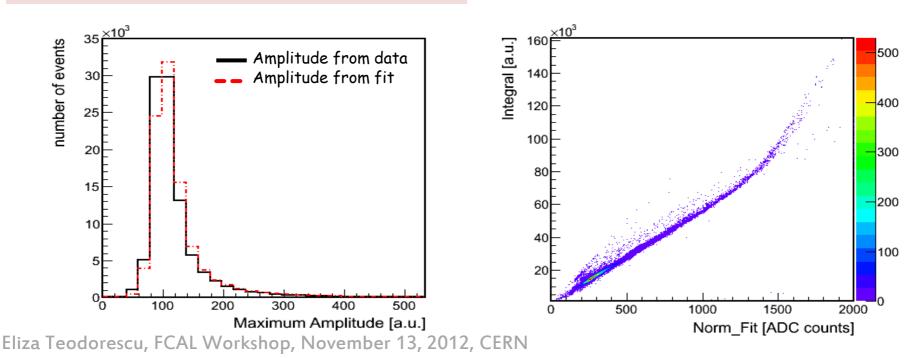
Determine a (τ = 60 ns - fixed)

Parameters distributions after the fit

- τ is free in the fit
- The fit method overestimates a bit the amplitude of the signal
- Strange effects in the correlation between integral / amplitude extracted from the fit



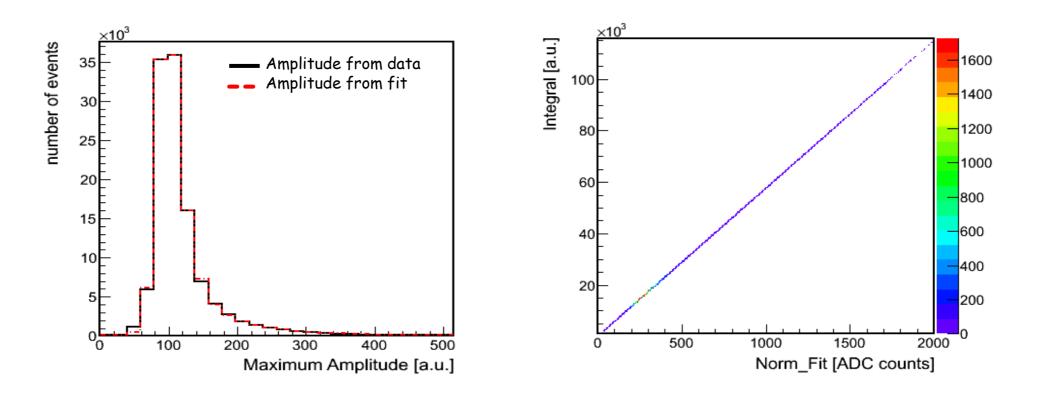
What happens if τ =fixed?



340

Parameters distributions after the fit

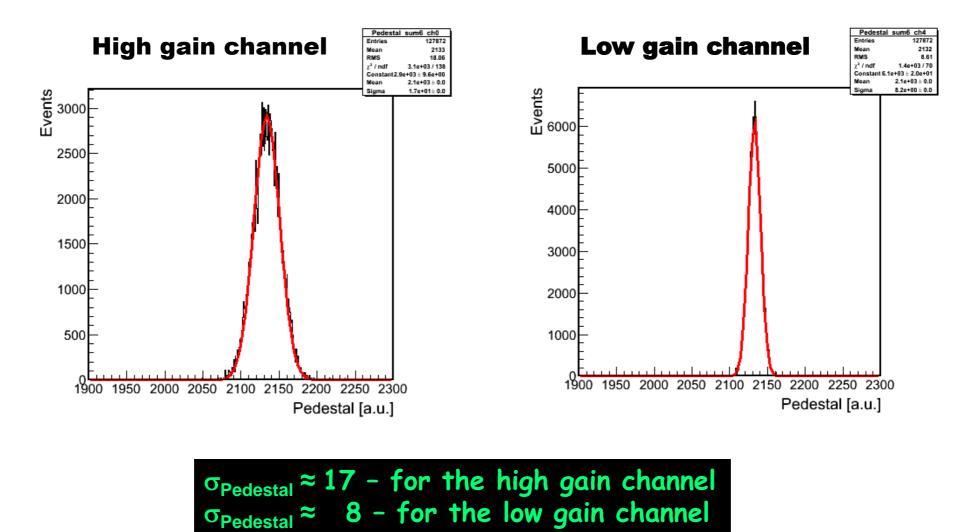
Fixed τ : τ = 60 ns



The signal shape function estimates the amplitude more accurately Good correlation between the integral and amplitude

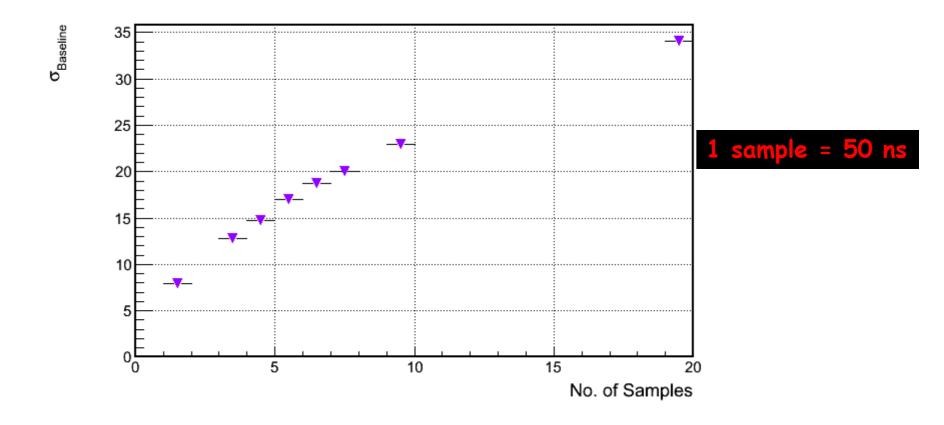
Pedestal distribution

Same window as for the signal integration is used (6 samples)



Pedestal distribution

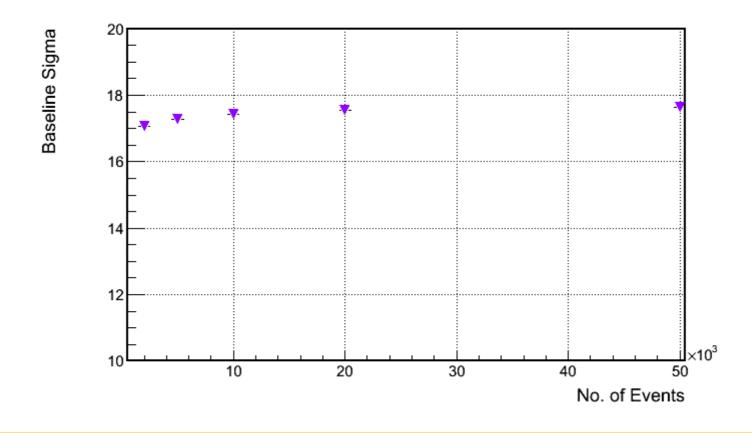
Distribution of the pedestal width as a function of the Integration Window



Clear variation of the pedestal width with the chosen integration window

Pedestal distribution

Distribution of the pedestal width as a function of the Number of events considered for evaluation

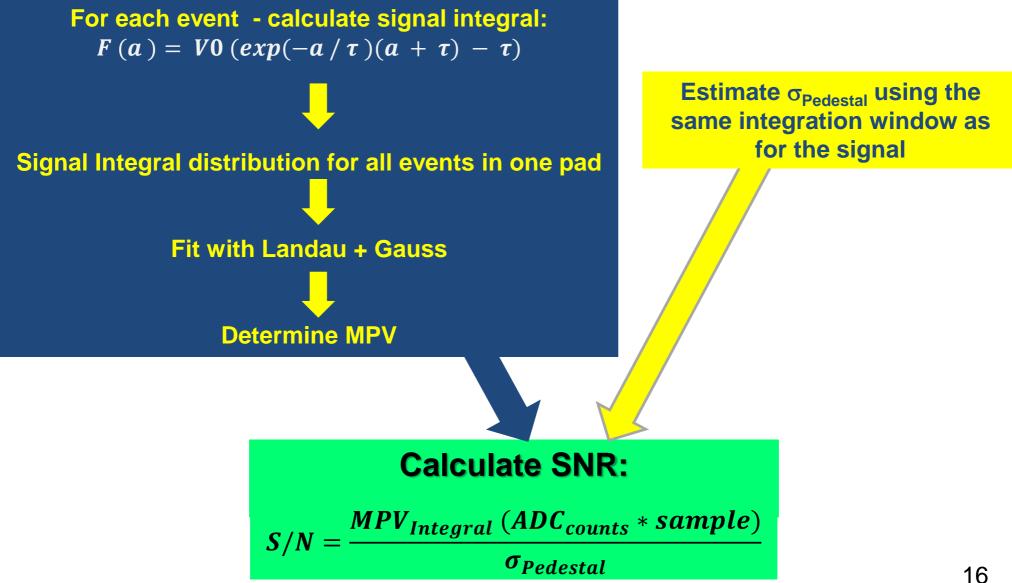


 $\sigma_{Pedestal}$ is stable with respect to the number of events To save processing time - used 1000 events to estimate the pedestal width

14

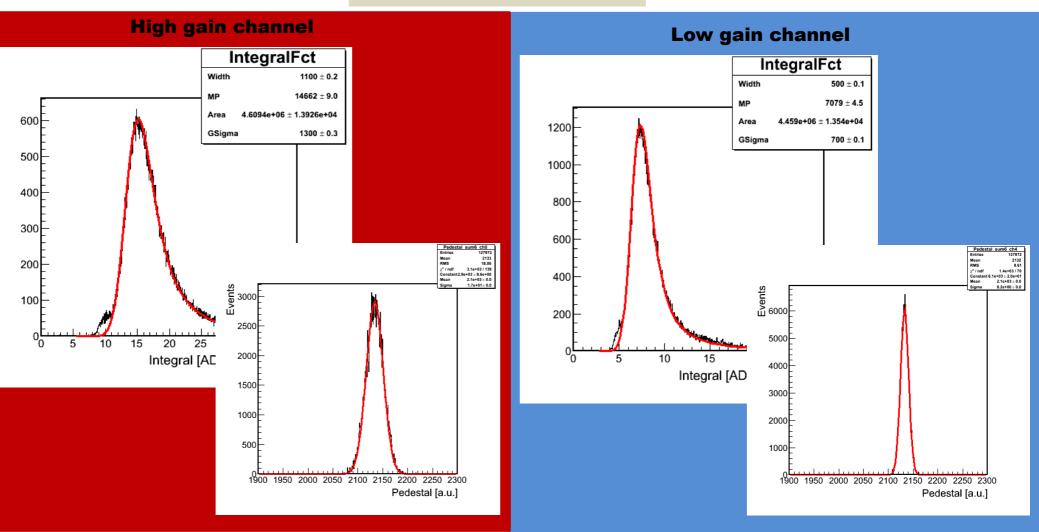
Signal To Noise Ratio

SNR Calculation



Integral and pedestal distributions

ASYNCHRONOUS MODE

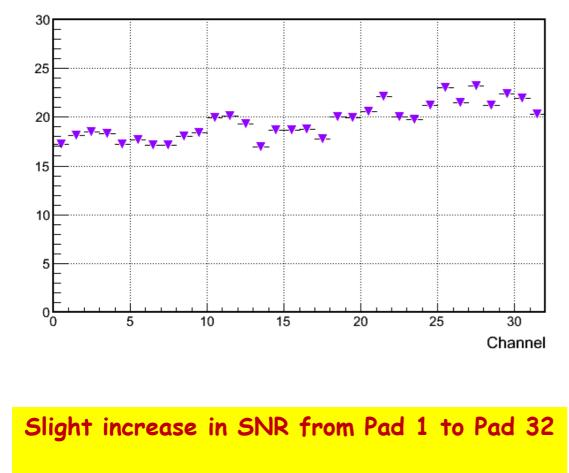


Example of SNR calculation – high gain channel: MPV_{Integral} = 1.4662 ADC_{counts}*ns = 293.243 ADC_{counts}*sample _{\sigma_{Pedestal}} = 17.05

S/N = 289.28/17.0479 = 17.209±0.09

Signal to noise distribution

Data collected for uniformity scan of the 32 pads > ~200000 events/pad in asynchronous mode

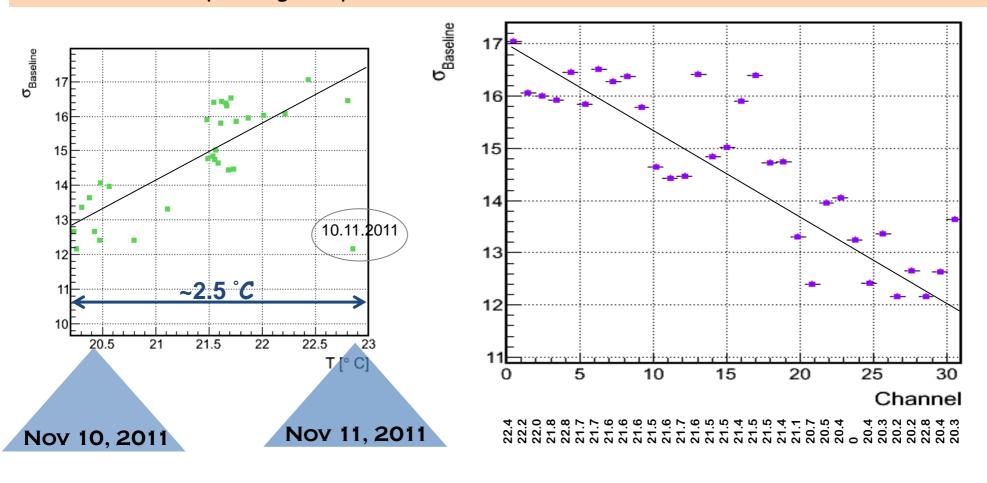


Could be due to temperature?

Pad	SNR	SNR Error
1	SNR = 17.2011	0.0914206
2	SNR = 18.0991	0.0355596
3	SNR = 18.4889	0.0365008
4	SNR = 18.3039	0.0362718
5	SNR = 17.2012	0.188541
6	SNR = 17.6279	0.0309874
7	SNR = 17.1548	0.0328447
8	SNR = 17.1556	0.0354785
9	SNR = 18.0192	0.0347569
10	SNR = 18.3819	0.0364855
11	SNR = 19.9502	0.0426264
12	SNR = 20.1503	0.0436353
13	SNR = 19.3055	0.0295797
14	SNR = 16.9379	0.0307132
15	SNR = 18.683	0.0355994
16	SNR = 18.6226	0.0322855
17	SNR = 18.7345	0.106576
18	SNR = 17.7276	0.0339501
19	SNR = 19.9792	0.0423869
20	SNR = 19.937	0.0294452
21	SNR = 20.536	0.0429176
22	SNR = 22.1238	0.0424119
23	SNR = 19.9766	0.0416106
24	SNR = 19.7116	0.0411397
25	SNR = 21.2325	0.0361981
26	SNR = 22.9877	0.0421648
27	SNR = 21.426	0.0371176
28	SNR = 23.2268	0.0444661
29	SNR = 21.2377	0.0414845
30	SNR = 22.3238	0.0465185
31	SNR = 21.9241	0.0400924
32	SNR = 20.2612	0.0407317

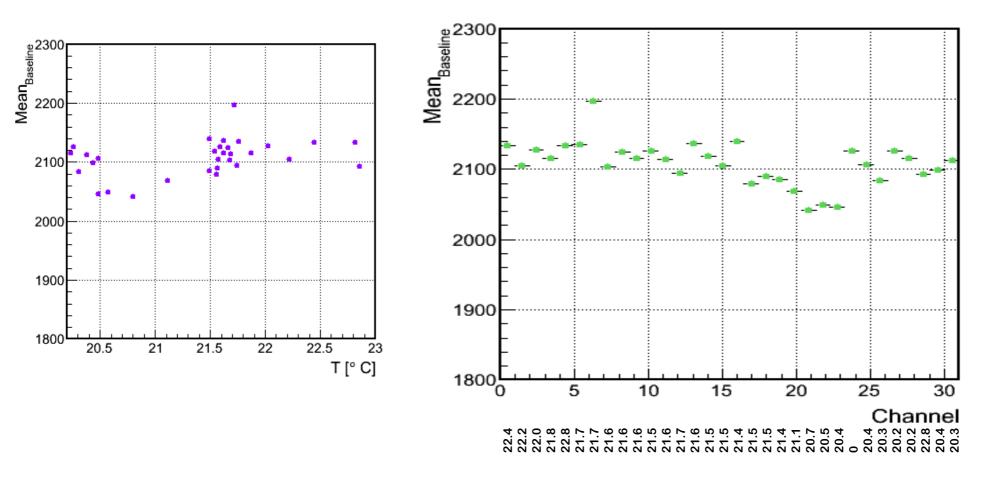
σ_{Baseline} variation with the temperature

Left: Baseline width as a function of the temperature Right: Baseline width corresponding to each pad (channel) - for each pad there is a measured corresponding temperature



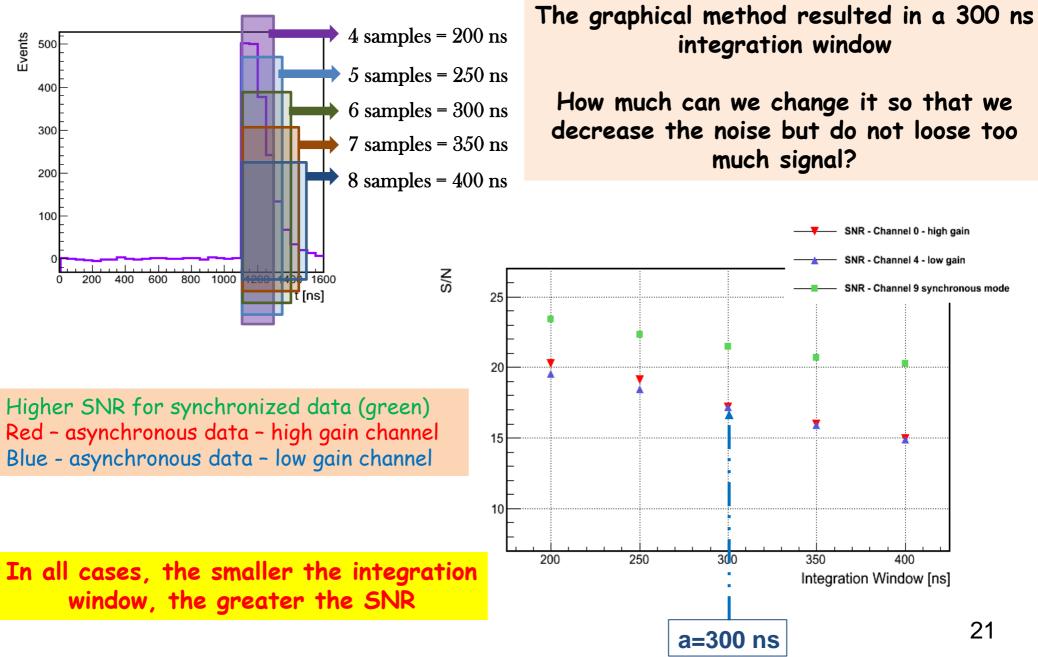
Decrease of σ_{Baseline} with decrease of T[°C]! Smaller σ_{Baseline} results in larger SNR!

Mean_{Baseline} variation with the temperature



The mean value of the baseline appears to remain reasonably constant

SNR w.r.t. integration window



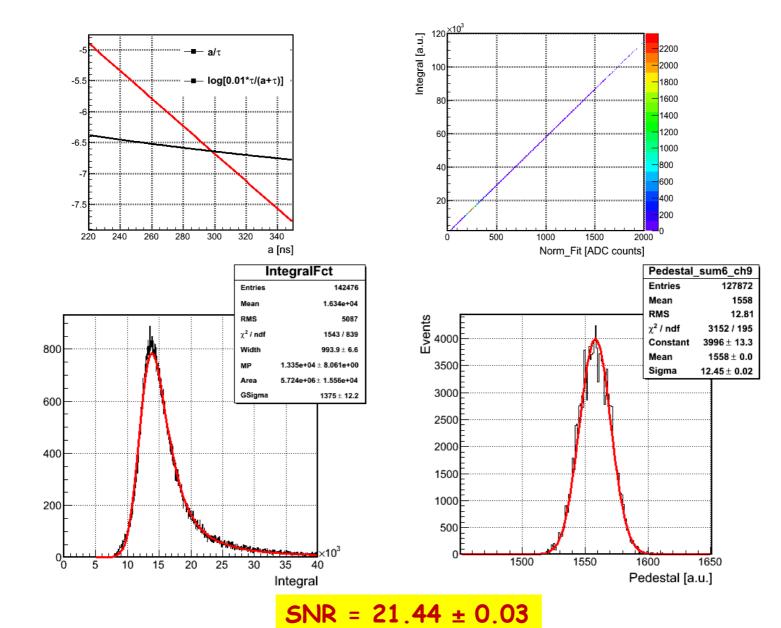
- Asynchronous and synchronous data collected during the November 2011 test-beam have been studied
- Using the integration method, the SNR has been evaluated for all of the BeamCal module pads
- Systematic increase of the SNR has been observed from Pad 1 to Pad 32
- Dependence of the pedestal width with the temperature could be the cause
- Is has been the established that the SNR increases when narrowing the integration window

Thank you for your attention!

Backup slides

SNR for synchronized data

Tested the integral method on synchronous data for Channel 9 (Pad 10) - high gain



Zoom on the Signal to Noise distribution

SNR with errors

