Effective theory approach to a gauge invariant definition of the jet quenching parameter

Michael Benzke

Detroit August 21, 2012

In collaboration with N. Brambilla, M. A. Escobedo, A. Vairo

1 / 21

Outline

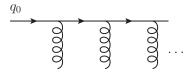
- Introduction: The jet quenching parameter
- Theoretical background
 - Soft-Collinear Effective Theory
 - The Glauber mode
 - Singular Gauges
- 3 Calculation
- Results and Conclusions

The jet quenching parameter \hat{q}

- **Jet broadening** refers to a process where the primary **jet** parton acquires a certain **transverse momentum** (to its original direction of motion) through interactions with a **medium**
- Define the **jet quenching parameter**

$$\hat{q} = \int d^2k_{\perp} \, k_{\perp}^2 \, \frac{d\Gamma}{d^2k_{\perp}}$$

lacktriangleright Γ is rate of elastic collisions of a parton with the medium particles



The jet quenching parameter \hat{q}

■ Define $P(k_{\perp})$ as the probability to acquire a transverse momentum k_{\perp} after travelling through a medium with length L

$$\hat{q}=rac{1}{L}\langle k_{\perp}^2
angle =rac{1}{L}\intrac{d^2k_{\perp}}{(2\pi)^2}\,k_{\perp}^2\,P(k_{\perp})$$

- Does **not** include collinear radiation which changes the energy of the parton (fragmentation)
- Assume that the final virtuality is determined though **medium interactions** and not the initial hard process

Goal

Find field theoretic definition of \hat{q}

The effective field theory approach

- Several scales appear in the process, most notably
 The energy of the jet Q
 The scale of the medium (temperature) T
- Small dimensionless ratio $\lambda = T/Q \ll 1$

Conclusion

Use an effective field theory that provides a systematic expansion in $\boldsymbol{\lambda}$

■ When dealing with jets and their interactions with soft particles Soft-Collinear Effective Theory (SCET) is the appropriate EFT Bauer et al. '01; Beneke at al. '02

Soft-Collinear Effective Theory

■ Classify modes by the scaling of their momentum components in the different light-cone directions (n, \bar{n})

$$(p^+,p^-,p_\perp)=(Q,Q,Q)\sim (1,1,1)$$
 is called hard $(p^+,p^-,p_\perp)=(T,T,T)\sim (\lambda,\lambda,\lambda)$ is called soft $(p^+,p^-,p_\perp)\sim (\lambda^2,1,\lambda)$ is called collinear

- Jets have a collinear momentum, i.e., they have a large momentum component in one light cone direction, but only a small invariant mass
- Integrate out the hard modes and the off-cone components of the collinear modes to find the **SCET Lagrangian** for collinear fields

$$\mathcal{L} = \bar{\xi}i\bar{n}\cdot D\frac{\rlap/n}{2}\xi + \bar{\xi}iD\!/_{\perp}\frac{1}{i\underline{n}\cdot D}iD\!/_{\perp}\frac{\rlap/n}{2}\xi + \mathcal{L}_{\mathsf{Y.M.}}, \quad iD = i\partial + gA$$

In-medium Interactions

- Other possible modes interacting with a collinear quark $(p^+, p^-, p_\perp) \sim (\lambda^2, \lambda^2, \lambda^2)$ is called ultrasoft Decouple at leading power as proven in Bauer et al. '01 $(p^+, p^-, p_\perp) \sim (\lambda^2, \lambda^2, \lambda)$ is called **Glauber** Introduction to SCET in Idilbi, Majumder '08 $(p^+, p^-, p_\perp) \sim (\lambda^2, \lambda, \lambda)$ also Glauber ("longitudinal") Ovanesyan, Vitev '11; Qin, Majumder '12
- Introduce it into the SCET Lagrangian as an effective classical field of the medium particles

In-medium Interactions

■ In order to determine the importance of these interactions the scaling of the Glauber field itself is relevant

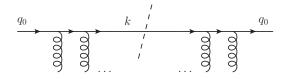
$$A^{\mu}(x) = \int d^4y \ D^{\mu\nu}(x-y)J_{\nu}(y)$$

- Depends on the gauge used
- Covariant gauge: $A^{+, cov} \sim \lambda^2$, $A^{cov}_{\perp} \lesssim \lambda^2$ (for a soft source the longitudinal Glauber is more relevant)
 - Idilbi, Majumder '08; Ovanesyan, Vitev '11
- At leading order in the power counting the extended SCET Lagrangian for the interaction of collinear particles with Glauber gluons is just

$$\mathcal{L} = \bar{\xi}i\bar{n}\cdot D\frac{n}{2}\xi, \quad iD = i\partial + gA$$

The Glauber mode

- Use SCET_G to calculate \hat{q} D'Eramo, Liu, Rajagopal '10
- Use optical theorem to determine scattering amplitude



■ Initially on-shell quark scattering on an arbitrary number of medium particles via Glauber exchange

\hat{q} in covariant gauge

■ Result is the Fourier transform of the medium averaged expectation value of two Wilson lines

$$\begin{split} P(k_{\perp}) &= \int \, d^2 x_{\perp} \, e^{ik_{\perp} \cdot x_{\perp}} \, \frac{1}{d(\mathcal{R})} \left\langle \mathrm{Tr} \left[W_{\mathcal{R}}^{\dagger}[0, x_{\perp}] W_{\mathcal{R}}[0, 0] \right] \right\rangle \\ W_{\mathcal{R}}[y^+, y_{\perp}] &= \mathcal{P} \left\{ \exp \left[ig \int_{-\sqrt{2}L/2}^{\sqrt{2}L/2} dy^- A^+(y^+, y^-, y_{\perp}) \right] \right\} \end{split}$$

■ Agrees with Casalderrey-Solana, Salgado '07; Liang, Wang, Zhou '08

$$(0, -\infty, x_{\perp}) \qquad (0, \infty, x_{\perp})$$

$$(0, -\infty, 0) \qquad (0, \infty, 0)$$

■ Not gauge invariant ($W_R = 1$ in light-cone gauge $A^+ = 0$)

Changes in arbitrary gauge

Goal

Want to show that SCET_G is complete and find a gauge invariant expression of \hat{q} for applications

 In singular gauges, such as light-cone gauge the scaling of the Glauber field is different

Idilbi, Majumder '08; Ovanesyan, Vitev '11
$$A_{\perp}^{
m cov} \ll A_{\perp}^{
m lcg}$$

- This can be traced back to the factor $k_{\perp}/[k^+]$ appearing in the Fourier transform of the gluon propagator in light-cone gauge (the square brackets indicate an appropriate regularization for he light-cone singularity)
- Additional leading power interaction term in the Lagrangian becomes relevant

$$\bar{\xi}iQ_{\perp}\frac{1}{Q}iQ_{\perp}\frac{n}{2}\xi$$

Changes in arbitrary gauge

■ Additional vertices for collinear-Glauber interaction

Will show

Sum over all possible interactions gives rise to a gauge invariant result

The gauge field at light-cone infinity

■ The gluon field may be decomposed

$$A_{\perp}^{i}(x^{+}, x^{-}, x_{\perp}) = A_{\perp}^{\text{cov}, i}(x^{+}, x^{-}, x_{\perp}) + \theta(x^{-})A_{\perp}^{i}(x^{+}, \infty, x_{\perp}) + \theta(-x^{-})A_{\perp}^{i}(x^{+}, -\infty, x_{\perp})$$

where $A_{\perp}^{{\rm cov},i}$ corresponds to the non-singular part of the propagator and vanishes at $\pm\infty^-$ and where the leading power comes from the terms at ∞^-

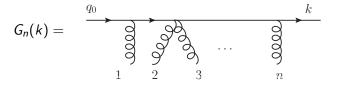
Echevarria, Idilbi, Scimemi '11

■ For $x^- \to \infty$ the field strength must vanish

$$ightarrow A_{\perp}(x^+,\infty,x_{\perp})$$
 is a pure gauge $A_{\perp}(x^+,\infty,x_{\perp}) = \nabla_{\perp}\phi(x^+,\infty,x_{\perp})$ $\phi(x^+,\infty,x_{\perp}) = -\int_{-\infty}^0 ds \, l_{\perp} \cdot A_{\perp}(x^+,\infty,x_{\perp}+l_{\perp}s)$ Belitsky, Ji, Yuan '02

Calculation

■ Define the (amputated) diagram with n gluon interactions



■ We can calculate this in a recursive fashion

14 / 21

Calculation

■ Decompose into fields at $\pm \infty$

$$G_n(k^-,k_\perp)=\sum_{j=0}^n\int rac{d^4q}{(2\pi)^4}\,G_{n-j}^+(k^-,k_\perp,q)\,rac{iQ\,\hbar}{2Qq^+-q_\perp^2+i\epsilon}\,G_j^-(q)$$
 where G^\pm contains only the gluon at $\pm\infty$

■ The recursive definition of G^- is then

$$G_{n}^{-}(q) = \int \frac{d^{4}q'}{(2\pi)^{4}} G_{n-1}^{-}(q') \xrightarrow{q'} \xrightarrow{q}$$

$$+ \int \frac{d^{4}q''}{(2\pi)^{4}} G_{n-2}^{-}(q'') \xrightarrow{q''} \xrightarrow{q''}$$

 \blacksquare and G_n^+ correspondingly

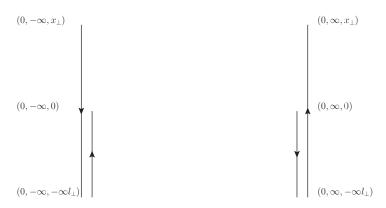
Squaring the amplitude and summing over any number of gluon interactions, we find

$$\begin{array}{lcl} P(k_{\perp}) & = & \frac{1}{N_c} \int d^2x_{\perp} \, \mathrm{e}^{\mathrm{i}k_{\perp} \cdot x_{\perp}} \\ & & \left\langle \mathrm{Tr} \big[\mathcal{T}^{\dagger}(0, -\infty, x_{\perp}) \, \mathcal{T}(0, \infty, x_{\perp}) \, \, \mathcal{T}^{\dagger}(0, \infty, 0) \, \mathcal{T}(0, -\infty, 0) \big] \right\rangle \end{array}$$

■ with

$$T(x_+, \pm \infty, x_\perp) = \mathcal{P} e^{-ig \int_{-\infty}^0 ds \ l_\perp \cdot A_\perp(x_+, \pm \infty, x_\perp + l_\perp s)}$$

the transverse Wilson line



lacktriangle Wilson lines in the perpendicular plane at $\pm\infty^-$ for light-cone gauge

Michael Benzke Gauge invariance of \hat{q} Jet Modification 2012 17 / 21

■ Combining the results with the ones in covariant gauge we find

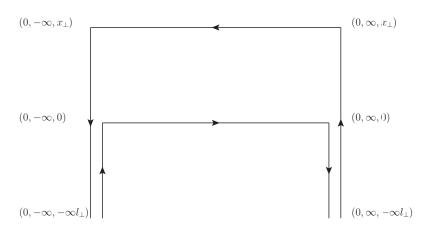
$$P(k_{\perp}) = \frac{1}{N_c} \int d^2x_{\perp} e^{ik_{\perp} \cdot x_{\perp}}$$

$$\left\langle \text{Tr} \left[T^{\dagger}(0, -\infty, x_{\perp}) W_F^{\dagger}[0, x_{\perp}] T(0, \infty, x_{\perp}) \right. \right.$$

$$\left. T^{\dagger}(0, \infty, 0) W_F[0, 0] T(0, -\infty, 0) \right] \right\rangle$$

- The fields on the lower line are time ordered, the ones on the upper line anti-time ordered
 - \rightarrow Use Keldysh-Schwinger contour in path integral formalism
- Note that for certain regularizations of the light-cone singularity of the gluon propagator, the Glauber field might vanish at either $+\infty^-$ or $-\infty^-$ even in light-cone gauge

Liang, Wang, Zhou '08



19 / 21

Conclusions

- lacksquare SCET $_G$ is a suitable framework for the calculation of gauge invariant results in jet quenching
- The jet quenching parameter \hat{q} can be expressed as the medium average of two longitudinal and four transverse Wilson lines
- The operators are ordered along a Keldysh-Schwinger contour
- The results may be used to determine \hat{q} in different frameworks also using lattice computations which require gauge invariant expressions

Thank you for your attention!

Bonus Slides

Soft-Collinear Effective Theory

- A jet originates from the fragmentation of a parton with high energy E_j and a much smaller invariant mass $m_j = \sqrt{p_j^2}$
 - $\rightarrow \mathsf{Almost\ light\text{-}like} \rightarrow \mathsf{use\ light\text{-}cone\ coordinates}$

$$p^{\mu} = \frac{n^{\mu}}{2} \bar{n} \cdot p + \frac{\bar{n}^{\mu}}{2} n \cdot p + p^{\mu}_{\perp} \quad \text{with } n, \; \bar{n} \; \text{light-cone vectors} \\ n \cdot p \sim E_{j} \gg p_{\perp}, \; \bar{n} \cdot p$$

lacksquare Introduce a scaling parameter $\lambda \ll 1$

$$\begin{split} & n \cdot p \sim E_j \quad m_j \sim \lambda E_j \\ & p^2 = n \cdot p \, \bar{n} \cdot p + p_\perp^2 \\ & \rightarrow p_\perp \sim \lambda E_j, \; \bar{n} \cdot p \sim \lambda^2 E_j^2 \end{split}$$

■ Jet momentum p_j scales like $(n \cdot p, \bar{n} \cdot p, p_\perp) \sim (\lambda^2, 1, \lambda)$ "hard-collinear"

Scaling of the Glauber field

■ Consider the form of the effective Glauber field

$$A^{\mu}(x) = \int d^4y \ D_G^{\mu\nu}(x - y) f_{\nu}(y)$$

$$D^{\mu\nu}(x - y) = \int \frac{d^4k}{(2\pi)^4} \frac{-i}{k^2 + i\epsilon} \left(g^{\mu\nu} - \frac{k^{\mu} \bar{n}^{\nu} + k^{\nu} \bar{n}^{\mu}}{[k^+]} \right) e^{-ik(x - y)}$$

 \blacksquare Source f_{ν} only knows about the soft scale $\sim \lambda^3$

24 / 21