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The jet quenching parameter q̂

Jet broadening refers to a process where the primary jet parton
acquires a certain transverse momentum (to its original direction of
motion) through interactions with a medium

Define the jet quenching parameter

q̂ =

∫
d2k⊥ k2

⊥
dΓ

d2k⊥

Γ is rate of elastic collisions of a parton with the medium particles

. . .

q0
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The jet quenching parameter q̂

Define P(k⊥) as the probability to acquire a transverse momentum
k⊥ after travelling through a medium with length L

q̂ =
1

L
〈k2
⊥〉 =

1

L

∫
d2k⊥
(2π)2

k2
⊥ P(k⊥)

Does not include collinear radiation which changes the energy of the
parton (fragmentation)

Assume that the final virtuality is determined though medium
interactions and not the initial hard process

Goal

Find field theoretic definition of q̂
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The effective field theory approach

Several scales appear in the process, most notably

The energy of the jet Q

The scale of the medium (temperature) T

Small dimensionless ratio λ = T/Q � 1

Conclusion

Use an effective field theory that provides a systematic expansion in λ

When dealing with jets and their interactions with soft particles
Soft-Collinear Effective Theory (SCET) is the appropriate EFT

Bauer et al. ’01; Beneke at al. ’02
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Soft-Collinear Effective Theory

Classify modes by the scaling of their momentum components in the
different light-cone directions (n, n̄)

(p+, p−, p⊥) = (Q,Q,Q) ∼ (1, 1, 1) is called hard

(p+, p−, p⊥) = (T ,T ,T ) ∼ (λ, λ, λ) is called soft

(p+, p−, p⊥) ∼ (λ2, 1, λ) is called collinear

Jets have a collinear momentum, i.e., they have a large momentum
component in one light cone direction, but only a small invariant mass

Integrate out the hard modes and the off-cone components of the
collinear modes to find the SCET Lagrangian for collinear fields

L = ξ̄i n̄ · D n/

2
ξ + ξ̄iD/⊥

1

in · D
iD/⊥

n/

2
ξ + LY.M., iD = i∂ + gA
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In-medium Interactions

Other possible modes interacting with a collinear quark

(p+, p−, p⊥) ∼ (λ2, λ2, λ2) is called ultrasoft

Decouple at leading power as proven in Bauer et al. ’01

(p+, p−, p⊥) ∼ (λ2, λ2, λ) is called Glauber

Introduction to SCET in Idilbi, Majumder ’08

(p+, p−, p⊥) ∼ (λ2, λ, λ) also Glauber (“longitudinal”)

Ovanesyan, Vitev ’11; Qin, Majumder ’12

Introduce it into the SCET Lagrangian as an effective classical field of
the medium particles
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In-medium Interactions

In order to determine the importance of these interactions the scaling
of the Glauber field itself is relevant

Aµ(x) =

∫
d4y Dµν(x − y)Jν(y)

Depends on the gauge used

Covariant gauge: A+,cov ∼ λ2, Acov
⊥ . λ2 (for a soft source the

longitudinal Glauber is more relevant)

Idilbi, Majumder ’08; Ovanesyan, Vitev ’11

At leading order in the power counting the extended SCET Lagrangian
for the interaction of collinear particles with Glauber gluons is just

L = ξ̄i n̄ · D n/

2
ξ, iD = i∂ + gA
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The Glauber mode

Use SCETG to calculate q̂

D’Eramo, Liu, Rajagopal ’10

Use optical theorem to determine scattering amplitude

. . .

q0

. . .

q0 k

Initially on-shell quark scattering on an arbitrary number of medium
particles via Glauber exchange
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q̂ in covariant gauge

Result is the Fourier transform of the medium averaged expectation
value of two Wilson lines

P(k⊥) =

∫
d2x⊥e ik⊥·x⊥ 1

d(R)

〈
Tr
[
W †
R[0, x⊥]WR[0, 0]

]〉
WR[y+, y⊥] = P

{
exp

[
ig

∫ √2L/2

−
√

2L/2
dy−A+(y+, y−, y⊥)

]}

Agrees with Casalderrey-Solana, Salgado ’07; Liang, Wang, Zhou ’08

(0,∞, 0)

(0,∞, x⊥)

(0,−∞, 0)

(0,−∞, x⊥)

Not gauge invariant (WR = 1 in light-cone gauge A+ = 0)
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Changes in arbitrary gauge

Goal

Want to show that SCETG is complete and find a gauge invariant
expression of q̂ for applications

In singular gauges, such as light-cone gauge the scaling of the
Glauber field is different

Idilbi, Majumder ’08; Ovanesyan, Vitev ’11

Acov
⊥ � Alcg

⊥
This can be traced back to the factor k⊥/[k+] appearing in the
Fourier transform of the gluon propagator in light-cone gauge (the
square brackets indicate an appropriate regularization for he
light-cone singularity)

Additional leading power interaction term in the Lagrangian becomes
relevant

ξ̄iD/⊥
1

Q
iD/⊥

n/

2
ξ
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Changes in arbitrary gauge

Additional vertices for collinear-Glauber interaction

A⊥ A⊥ A⊥

Will show

Sum over all possible interactions gives rise to a gauge invariant result
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The gauge field at light-cone infinity

The gluon field may be decomposed

Ai
⊥(x+, x−, x⊥) =

Acov,i
⊥ (x+, x−, x⊥) + θ(x−)Ai

⊥(x+,∞, x⊥) + θ(−x−)Ai
⊥(x+,−∞, x⊥)

where Acov,i
⊥ corresponds to the non-singular part of the propagator

and vanishes at ±∞− and where the leading power comes from the
terms at ∞−

Echevarria, Idilbi, Scimemi ’11

For x− →∞ the field strength must vanish

→ A⊥(x+,∞, x⊥) is a pure gauge

A⊥(x+,∞, x⊥) = ∇⊥φ(x+,∞, x⊥)

φ(x+,∞, x⊥) = −
∫ 0
−∞ ds l⊥ · A⊥(x+,∞, x⊥ + l⊥s)

Belitsky, Ji, Yuan ’02
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Calculation

Define the (amputated) diagram with n gluon interactions

Gn(k) =

q0

. . .

k

1 2 3 n

We can calculate this in a recursive fashion
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Calculation

Decompose into fields at ±∞
Gn(k−, k⊥) =

∑n
j=0

∫ d4q
(2π)4 G+

n−j(k
−, k⊥, q) iQ n̄/

2Qq+−q2
⊥+iε

G−j (q)

where G± contains only the gluon at ±∞
The recursive definition of G− is then

G−n (q) =
∫ d4q′

(2π)4 G−n−1(q′)
q
′

q

+
∫ d4q′′

(2π)4 G−n−2(q′′)
q
′′

q

and G+
n correspondingly
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Results

Squaring the amplitude and summing over any number of gluon
interactions, we find

P(k⊥) =
1

Nc

∫
d2x⊥ e ik⊥·x⊥〈

Tr
[
T †(0,−∞, x⊥)T (0,∞, x⊥) T †(0,∞, 0)T (0,−∞, 0)

]〉
with

T (x+,±∞, x⊥) = P e−ig
∫ 0
−∞ ds l⊥·A⊥(x+,±∞,x⊥+l⊥s)

the transverse Wilson line
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Results

(0,∞,−∞l⊥)

(0,∞, 0)

(0,∞, x⊥)(0,−∞, x⊥)

(0,−∞, 0)

(0,−∞,−∞l⊥)

Wilson lines in the perpendicular plane at ±∞− for light-cone gauge
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Results

Combining the results with the ones in covariant gauge we find

P(k⊥) =
1

Nc

∫
d2x⊥ e ik⊥·x⊥〈

Tr
[
T †(0,−∞, x⊥) W †

F [0, x⊥] T (0,∞, x⊥)

T †(0,∞, 0) WF [0, 0] T (0,−∞, 0)
]〉

The fields on the lower line are time ordered, the ones on the upper
line anti-time ordered

→ Use Keldysh-Schwinger contour in path integral formalism

Note that for certain regularizations of the light-cone singularity of
the gluon propagator, the Glauber field might vanish at either +∞−
or −∞− even in light-cone gauge

Liang, Wang, Zhou ’08
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Results

(0,∞,−∞l⊥)

(0,∞, 0)

(0,∞, x⊥)(0,−∞, x⊥)

(0,−∞, 0)

(0,−∞,−∞l⊥)
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Conclusions

SCETG is a suitable framework for the calculation of gauge invariant
results in jet quenching

The jet quenching parameter q̂ can be expressed as the medium
average of two longitudinal and four transverse Wilson lines

The operators are ordered along a Keldysh-Schwinger contour

The results may be used to determine q̂ in different frameworks also
using lattice computations which require gauge invariant expressions
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Thank you for your attention!
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Bonus Slides

Michael Benzke Gauge invariance of q̂ Jet Modification 2012 22 / 21



Soft-Collinear Effective Theory

A jet originates from the fragmentation of a parton with high energy

Ej and a much smaller invariant mass mj =
√

p2
j

→ Almost light-like → use light-cone coordinates

pµ =
nµ

2
n̄ · p +

n̄µ

2
n · p + pµ⊥ with n, n̄ light-cone vectors

n · p ∼ Ej � p⊥, n̄ · p

Introduce a scaling parameter λ� 1

n · p ∼ Ej mj ∼ λEj

p2 = n · p n̄ · p + p2
⊥

→ p⊥ ∼ λEj , n̄ · p ∼ λ2E 2
j

Jet momentum pj scales like (n · p, n̄ · p, p⊥) ∼ (λ2, 1, λ)

“hard-collinear”
Michael Benzke Gauge invariance of q̂ Jet Modification 2012 23 / 21



Scaling of the Glauber field

Consider the form of the effective Glauber field

Aµ(x) =

∫
d4y Dµν

G (x − y) fν(y)

Dµν(x − y) =

∫
d4k

(2π)4

−i

k2 + iε

(
gµν − kµn̄ν + kν n̄µ

[k+]

)
e−ik(x−y)

Source fν only knows about the soft scale ∼ λ3
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