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☍ Heavy Quarkonia in medium 
z  J/ψ 
z  ϒ : A cleaner probe of the medium. 

☍ Open Heavy Flavor 
z  Non-Photonic Electrons and D meson RAA 

z  D meson v2 

z  The quest for Beauty 
ª  b fraction via electron DCA 
ª  Non-prompt J/ψ 
ª  b-jet reconstruction 
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Ilya Ilyin. 
WR: 233 kg lift 
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e-/µ- 

e+/µ+ 



☍ STAR & PHENIX: Consistent results 

☍ Color Singlet + Color Octet, Color 
Evaporation: consistent with data. 

☍ Color Singlet: ruled out. 
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☍ ALICE results. 

☍ CS + CO NLO : Consistent with ALICE data. 

☍ Rate can be calculated in pp. What about polarization? 
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☍ Polarization: can help 
discriminate between production 
mechanisms. 

☍ Longstanding puzzle from 
Tevatron measurements. 
z  No model was consistent with 

data. 

☍ Experimental result: 
z  Almost no polarization. 

☍ Theory result: 
z  CS+CO at NLO: not too bad!  
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☍ STAR and PHENIX: consistent results at midrapidity. 

☍  Is shadowing + breakup cross-section enough to describe dAu? 
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☍  PHENIX: Study rapidity and centrality dependence 
z  Dashed line: Shadowing + σbr model (no Cronin) 
z  Peripheral (Top) : Weak modification. Shadowing works ok. 
z  Central (bottom) : Stronger modification. Suppression in CNM at low pT. No 

suppression in high pT. 
ª  Largest enhancement at Backward rapidity high pT. Model does not match data. 

Cronin?  
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FIG. 11: (Color Online) J/ψ → µ+µ− RdAu, as a function of
pT for a) central, b) midcentral, c) midperipheral, and d) pe-
ripheral events in the interval −2.2 < y < −1.2. The 60–88%
RdAu point at pT = 5.75 GeV/c has been left off the plot, as
it is above the plotted range and has very large uncertainties,
however it is included in Table XIII. Curves are calculations
by Ferreiro et al. [27] discussed in the text.

tion. Little theoretical or experimental guidance cur-
rently exists on the exact nature of this effect due to
the many complications and competing effects involved
in J/ψ production in p(d)+A collisions. Often this effect
is modeled by a simple “effective” cross section, which re-
mains constant with pT , however there are a number of
models, including a dynamic breakup cross section that
changes based on the kinematics of the produced J/ψ.

The broadening of the pT distribution, termed the
Cronin effect [31], is typically attributed to multiple elas-
tic scattering of the incoming parton before the hard col-
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FIG. 12: (Color Online) J/ψ → e+e− RdAu, as a function
of pT for a) central, b) midcentral, c) midperipheral, and d)
peripheral events in the interval |y| < 0.35. Curves are calcu-
lations by Ferreiro et al. [27] discussed in the text.

lision that produces the J/ψ. This modifies the pT de-
pendence of the J/ψ production by adding pT vectorially
to the incoming parton. This generally causes a decrease
in J/ψ production at low pT and a compensating increase
at higher pT (pT ≈ 5−10 GeV/c ), which eventually falls
off at yet higher pT (pT ≈ 10 GeV/c ).

The first set of model calculations that we discuss is by
Kopeliovich et al. [32, 33] where the effects on a cc̄ dipole
propagating through a nucleus are calculated. The J/ψ
production is calculated based on 2→1 kinematics,

x =

√

〈M2
cc̄〉+ 〈pT 2〉√

s
e−y, (12)
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FIG. 11: (Color Online) J/ψ → µ+µ− RdAu, as a function of
pT for a) central, b) midcentral, c) midperipheral, and d) pe-
ripheral events in the interval −2.2 < y < −1.2. The 60–88%
RdAu point at pT = 5.75 GeV/c has been left off the plot, as
it is above the plotted range and has very large uncertainties,
however it is included in Table XIII. Curves are calculations
by Ferreiro et al. [27] discussed in the text.
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FIG. 11: (Color Online) J/ψ → µ+µ− RdAu, as a function of
pT for a) central, b) midcentral, c) midperipheral, and d) pe-
ripheral events in the interval −2.2 < y < −1.2. The 60–88%
RdAu point at pT = 5.75 GeV/c has been left off the plot, as
it is above the plotted range and has very large uncertainties,
however it is included in Table XIII. Curves are calculations
by Ferreiro et al. [27] discussed in the text.
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mains constant with pT , however there are a number of
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of pT for a) central, b) midcentral, c) midperipheral, and d)
peripheral events in the interval |y| < 0.35. Curves are calcu-
lations by Ferreiro et al. [27] discussed in the text.

lision that produces the J/ψ. This modifies the pT de-
pendence of the J/ψ production by adding pT vectorially
to the incoming parton. This generally causes a decrease
in J/ψ production at low pT and a compensating increase
at higher pT (pT ≈ 5−10 GeV/c ), which eventually falls
off at yet higher pT (pT ≈ 10 GeV/c ).

The first set of model calculations that we discuss is by
Kopeliovich et al. [32, 33] where the effects on a cc̄ dipole
propagating through a nucleus are calculated. The J/ψ
production is calculated based on 2→1 kinematics,

x =

√

〈M2
cc̄〉+ 〈pT 2〉√

s
e−y, (12)
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however it is included in Table XIII. Curves are calculations
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☍  Lower energies: suppression is similar than at 200 GeV. 

☍  Suppression + Regeneration: surprising cancellation! 
z  This is at forward rapidity: 1.2 < |y|< 2.2 
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Theory
200 GeV
62 GeV
39 GeV

(200 GeV) PRC 84, 054912 (2011)AAR
 9.2%±Global sys.= 

(62.4 GeV) = PHENIX data/Our estimateAAR
 29.4%±Global sys.= 

(39 GeV) = PHENIX data/FNAL dataAAR
 19%±Global sys.= 

Direct (x0.5)
Regeneration (x0.5)

Theory:  
X. Zhao, R. Rapp  
Phys Rev C82 064905 (2010) 



☍  CMS: pT>6.5 GeV/c |y|<2.4 
z  Increasing suppression vs. Npart 

☍  ALICE: pT>0. |y|<0.9 and 2.5<y<4 
z  Less Suppression at low pT 

ª  Less suppression than at RHIC 
ª  Midrapidity vs. forward: errors too large to say if difference is 

significant 

☍  Recombination?  
z  At low pT needed to explain ALICE data. 
z  Not needed at high pT to explain CMS data. 
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☍  Recombination should play a role 
at low pT. 

☍ Different suppression pattern for 
low- and high-pT J/ψ 
z  Data also in forward rapidity: 

ª  2.5<y<4 

☍  Smaller RAA for high pT J/ψ 

☍ Model (Zhao & Rapp):  
z  ~50% of low-pT J/ψ produced via 

(re)combination 
z  high pT: contribution is negligible 
z  Works well for Npart > 100 
z  Same model worked for PHENIX 

energy dependence of J/ψ RAA. 
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recombination 

recombination 



☍  RAA above pT>4 GeV ~ 0.35 for both. 
ª  Not apples to apples: inclusive vs. prompt. Different y. 

☍  RAA for low pT in ALICE: contributions from recombination needed at low pT. 

☍  RAA for high pT in CMS:  
z  no recombination.  
z  Model including CNM E-loss + collisional dissociation: ruled out at high pT.  
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☍  Suppression: 
z  More suppressed in central collisions. 
z  More suppressed in forward rapidities. 
z  Comover+regeneration+shadowing model  

ª  (no screening/primordial suppression) 
ª  predicts a weaker rapidity dependence than seen in data. 
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Great data coming out! 
Recombination and screening 

important at low pT. 
Several effects play a role in different 
regions. Careful comparisons will be 

needed. 
 



☍ Measure Ψ(2S) relative to Ψ(1S) 
z  PHENIX : |y|<0.35, e+e- measurement 
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J/ψ or ψ’ cc 
☍  If both charmonium states form outside the 

medium: 
z  ψ‘/ J/ψ should be the same in dAu and pp. 



☍  “Relative Modification” : ψ‘/ J/ψ in dAu compared to pp. 
z  If only formation time matters, “Relative Modification” ~ 1. 

☍  Expect a bit more suppression than J/ψ : Different break-up cross sections

z  r ~ 0.25 fm, r ~ 0.45 fm:  

ª  radius is larger by factor ~2. 
ª  Leads to Small effect in pA data from NA50 nor E866. 

☍  Relative Modification in PHENIX is much larger! 
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 




☍  |y|<1.6, 6.5<pT<30GeV/c : ψ‘/J/ψ ratio smaller than in pp. 

☍  1.6<|y|<2.4, 3<pT<30 GeV/c: ψ‘/J/ψ ratio larger than in pp. 
z  Large pp uncertainty. only a ~2 sigma effect. 

☍  2.5 < y < 4. 
z  Low pT 0-3 GeV/c:ψ‘/J/ψ ratio ~ same as in pp. 
z  Intermediate pT 3-8 GeV/c:  ratio ~ same as in pp. 
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Picture not clear yet.  
Errors still large. Need a 

better pp reference! 



☍ A better probe of the medium: 

☍  Smaller co-mover absorption 

☍ Negligible regeneration 

☍ Higher mass, pQCD calculations 
work better 

☍  STAR:  
z  Significantly improved p+p 

measurements w/ ~2.5x more lum. 
z  Consistent with prediction from 

model requiring strong 2S and 
complete 3S suppression.  
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☍  CMS : First RAA measurement for ϒ(2S). 

☍  Centrality integrated: 
z  ϒ(1S):   0.56±0.08±0.07 

z  ϒ(2S):   0.12±0.04±0.02 
z  ϒ(3S): <0.10 at 95% CL 
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☍  Both models:  
z  Connections to Lattice QCD (Deconfinement) 

ª  Potential Models or Spectral functions. 

z  Dynamical evolution (hydro or kinetic 
theory). 

z  Include feed-down contributions. 
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☍  High Temperatures!  
ª  M. Strickland: 494 < T < 520 MeV. 
ª  Emerick, Zhao & Rapp: T ≈ 600 MeV 

☍  Regeneration is small for 1S. 

☍  Nuclear Absorption is not: need pPb and 
dAu.  
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☍  Energy loss expectation from pQCD and AdS/CFT.  

☍ Heavy quarks lose less energy than light quarks. 
z  W. Horowitz: Ok at low pT, but at high pT this can change. 

☍  Very high pT: mass effect should be less important. 
z  B approaches D. Both approach light quark. 
z  Not so in AdS/CFT, though corrections needed at high pT. 
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☍  STAR: Enhancement at low pt, suppression for pT>4. 

☍  ALICE: Hints of a minimum RAA ≈ 0.2 around 10 GeV/c.  

☍  Both: more suppressed in central collisions, as expected. 

☍  If there is charm energy loss, does it show a path length dependence? 
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☍ Path length dependence is qualitatively consistent with 
expectation from energy loss. 

☍ Would like to see calculations comparing RAA and v2 of charm 
together. 

8/22/12 Manuel Calderón de la Barca Sánchez 23 

Centrality (%)
0 10 20 30 40 50

)0
 (p

ro
m

pt
 D

2v

-0.2

-0.1

0

0.1

0.2

0.3

0.4

<3 GeV/c
T

 bins, 2<pq6, EP 2 0D

<4 GeV/c
T

 bins, 3<pq6, EP 2 0D

=2.76 TeVNNsPb-Pb    

Empty box: syst. from data
Filled box: syst. from B feed-down

ALI−PREL−33390

 (GeV/c) 
T

 p
0 2 4 6 8 10 12 14 16 18 20

0
 p

ro
m

pt
 D

AA
 R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

+/
- KA0D

 events610×9.5
 = 2.76 TeVNNsPb-Pb, 

Centrality 30-50%

 In PlaneAA R0D
 Out Of PlaneAA R0D

Correlated syst. uncertainties
Uncorrelated syst. uncertainties
Anticorrelated syst. uncertinties
Global norm. uncertainty

[ ]

ALI−PREL−33131
 (GeV/c)

T
p

0 2 4 6 8 10 12 14

2
 v
±

H
ea

vy
 fl

av
ou

r d
ec

ay
 e

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

|<0.7d = 2.76 TeV, |NNs20-40% Pb-Pb, 

ALI−PREL−33311



8/22/12 Manuel Calderón de la Barca Sánchez 24 

☍ Amazing what you can buy nowadays:  
z  Bb quenching, and “hydration” in a bottle... 



☍  Based on template fits to dca distributions. 

☍  Charm and Bottom templates have same fragmentation fractions as 
in pp.   
z  If these change in AuAu, the template shape can change. 

ª  cτ for D0 : 137 fm/c, for D+: 347 fm/c. 
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 RAA (bàe) =  

 

x 



☍  Non-Photonic Electrons from b-quarks: more suppressed than those from c-
quarks !! 

☍  Very surprising result.  

☍  Verification via non-prompt J/ψ (with VTX) in PHENIX would be very useful. 
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☍  Centrality (pT, y integrated): slow decrease of RAA 
ª  50-100%: factor ~1.4 
ª  0-5%: factor ~2.5 

☍  y (pT, centrality integrated): hints of less suppression at mid-rapidity 

☍  pT(y, centrality integrated): hints of increasing suppression 
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suppression for lower pT 
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☍  Radiative Energy loss: not enough to describe data. 

☍  Adding Collisional E-loss or Dissociation in QGP: better agreement. 

☍  Even better if we did comparisons using parent B pT. 

☍  Energy loss: seems to work here for b-quarks! 
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☍  Very good resolution for displaced vertices. 

☍ Above: pp event with 2 b-tagged jets.  
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Vertex resolution: 
50-100 µm. 
B cτ:  ~500  µm 



☍  Procedure: 
z  Secondary vertex mass: higher for b-jets than for lighter quark jets. 
z  Use Pythia to obtain templates for b, c and light quark jets. 
z  Fit distribution to templates. Calculate efficiency and purity. 

☍ Obtain b-jet fraction in pp and in PbPb.   
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☍ First measurement of b-jet RAA. 
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☍  b-jet RAA : same magnitude as inclusive jet RAA at 100 GeV/c. 
z  beauty in the hot QGP at LHC. 
z  Consistent with expectations from QCD-based energy loss (not AdS/

CFT) 
ª  Which makes the PHENIX b result all the more puzzling... 
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☍  Charmonium: 
z  Regeneration plays an important role from 39 GeV up to 2.76 TeV. 
z  Caution: cold nuclear matter effects are important. 

ª  Suppression at low pT. Rapidity dependence needs physics beyond shadowing + 
nuclear absorption. 

z  Ψ’ from PHENIX in dAu: surprising suppression! 

☍  Bottomonium: 
z  STAR and CMS: Upsilon suppression in AuAu and PbPb.  

ª  Suppression expected to be dominated by Hot matter effects. 
ª  Υ RAA: Consistent with dynamical models of sequential suppression of bottomonium 

in a hot (T~500-600 MeV) deconfined QGP. 

☍  Open charm 
z  Observed suppression by STAR, PHENIX, and ALICE. 

ª  Via electrons and now via direct D0 reconstruction. 
z  ALICE: Suppression shows expected dependence with path length 

☍  Bare bottom: 
z  PHENIX: Measure fraction of electrons from b-quarks 

ª   Surprising suppression of b! Not expected from pQCD + dead cone effect. 
¤  Would like to see a confirmation with an independent measurement, e.g. B→J/Ψ 

z  CMS: Measure Non-Prompt J/Ψ and first measurement of b-jets. 
ª  Consistent with pQCD energy loss. 
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That was some 
heavy lifting! 
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