

Theory Jet Overview II

Yacine Mehtar-Tani IPhT CEA/Saclay

August 20, 2012

Jet Modification in the RHIC and LHC Era

Detroit

MOTIVATION

- Fantastic results on jet observables at QM!
- In-medium jets match the vacuum base line (Fragmentation functions)
- Look for deviations of in-medium observables from vacuum ones in pQCD

OUTLINE

- Introduction
- Jets in vacuum (transverse coherence)
- Medium-induced gluon radiation (longitudinal coherence)
- In-medium multiple parton branching:

...toward an understanding of jets in HIC?

- Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes
- LPHD: Hadronization does not affect inclusive observables (jet shape, energy distribution etc..)

Large time domain for pQCD: $\frac{1}{E} < t < \frac{E}{\Lambda_0^2}$

Inclusive jet observables determined by two scales:

the jet transverse mass non-perturbative scale

$$M_{\perp} \equiv E \, \theta_{jet}$$
 $Q_0 \sim \Lambda_{\rm QCD}$

Large time domain for pQCD:

$$\frac{1}{E} < t < \frac{E}{\Lambda_{\rm QCD}^2}$$

In-medium scales? (before doing the math)

$$M_{\perp} \equiv E \, \theta_{jet}$$
 $Q_{0} \sim \Lambda_{
m QCD}$ + $Q_{s} \equiv \sqrt{\hat{q}L} \equiv m_{D} \, \sqrt{N_{
m scat}}$ $r_{\perp jet}^{-1} \equiv (\theta_{jet}L)^{-1}$

 Hadronization outside the medium for energetic partons:

$$t_{hadr} \sim \frac{1 - 100}{(0.2)^2 \cdot 5} = 5 - 500 \,\text{fm}$$

In medium scales? (before doing the math)

$$M_{\perp} \equiv E \, \theta_{jet}$$
 + $Q_s \equiv \sqrt{\hat{q}L} \equiv m_D \, \sqrt{N_{
m scat}}$ + $r_{\perp jet}^{-1} \equiv (\theta_{jet}L)^{-1}$

Multiscale problem!

JETS IN VACUUM TRANSVERSE COHERENCE

$$M_{\perp} \equiv E \, \theta_{jet}$$

$$k_{\perp} > Q_0$$
 $z = \omega/E$

the diff-branching probability

$$dP = \frac{\alpha_s C_R}{\pi} P(z) dz \frac{d^2 k_{\perp}}{k_{\perp}^2}$$

soft and collinear divergences phase-space enhancement

$$\alpha_s \to \alpha_s \ln^2 \frac{M_\perp}{Q_0}$$

formation time of the daughter partons

$$t_f \equiv \frac{E}{(p+k)^2} \sim \frac{E}{2p \cdot k} \sim \frac{\omega}{k_\perp^2}$$

$$\omega_2 \ll \omega_1 \ll E$$

$$\frac{E}{(p+k_1+k_2)^2} \sim \frac{E}{2p \cdot k_1} \sim \frac{\omega_1}{k_{1\perp}^2}$$

$$\frac{\omega}{(k_1+k_2)^2} \sim \frac{\omega_1}{2k_1 \cdot k_2} \sim \frac{\omega_2}{k_{2\perp}^2}$$

$$\omega_2 \ll \omega_1 \ll E$$

$$\frac{E}{(p+k_1+k_2)^2} \sim \frac{E}{2p \cdot k_1} \sim \frac{\omega_1}{k_{1\perp}^2}$$

$$\frac{\omega}{(k_1+k_2)^2} \sim \frac{\omega_1}{2k_1 \cdot k_2} \sim \frac{\omega_2}{k_{2\perp}^2}$$

Logarithmic regions $t_{f2} \gg t_{f1}$

$$P_{12} = \left(\frac{\alpha_s C_A}{\pi}\right)^2 \int^E \frac{d\omega_1}{\omega_1} \int^{\omega_1} \frac{d\omega_2}{\omega_2} \int^{M_\perp} \frac{d^2 k_{\perp 1}}{k_{\perp 1}^2} \int^{k_{\perp 1}} \frac{d^2 k_{\perp 2}}{k_{\perp 2}^2}$$

$$\omega_2 \ll \omega_1 \ll E$$

$$\frac{E}{(p+k_1+k_2)^2} \sim \frac{E}{2p \cdot k_1} \sim \frac{\omega_1}{k_{1\perp}^2}$$

$$\frac{\omega}{(k_1+k_2)^2} \sim \frac{\omega_1}{2k_1 \cdot k_2} \sim \frac{\omega_2}{k_{2\perp}^2}$$

Logarithmic regions $t_{f2} \gg t_{f1}$

The softest gluon sees its parent as if they were produced at t=0

$$P_{12} = \left(\frac{\alpha_s C_A}{\pi}\right)^2 \int^E \frac{d\omega_1}{\omega_1} \int^{\omega_1} \frac{d\omega_2}{\omega_2} \int^{M_{\perp}} \frac{d^2 k_{\perp 1}}{k_{\perp 1}^2} \int^{k_{\perp 1}} \frac{d^2 k_{\perp 2}}{k_{\perp 2}^2}$$

$$\omega_2 \ll \omega_1 \ll E$$

$$\frac{E}{(p+k_1+k_2)^2} \sim \frac{E}{2p \cdot k_1} \sim \frac{\omega_1}{k_{1\perp}^2}$$

$$\frac{\omega}{(k_1+k_2)^2} \sim \frac{\omega_1}{2k_1 \cdot k_2} \sim \frac{\omega_2}{k_{2\perp}^2}$$

Logarithmic regions $t_{f2} \gg t_{f1}$ For arbitrary gluon emissions

$$t_{fN}\gg ...\gg t_{f2}\gg t_{f1}$$

BRANCHING IN VACUUM

Ladder diagrams (no interferences) resum mass singularities: Strong ordering in k_T (DGLAP)

$$\frac{d}{d\ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_c^B(x/z, \mathbf{M}_{\perp})$$

Radiation suppressed at $\theta_2 > \theta_1$ because of coherence phenomena: Interference of I with 2 at large angles

$$k_{2\perp} \ll k_{1\perp}$$
 $\theta_1 < \theta_2 \ll \frac{\omega_1}{\omega_2} \theta_1$ k_T ordering fails!

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

gluon radiation off a pair of color charges b and c which

originates from a (highly virtual) charge a

a

classical current

$$J^{\mu} = T_a \frac{p_a^{\mu}}{p_a \cdot k} + T_b \frac{p_b^{\mu}}{p_b \cdot k}$$

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

gluon radiation off a pair of color charges b and c which

originates from a (highly virtual) charge a

classical current
$$J^{\mu} = T_a \frac{p_a^{\mu}}{p_a \cdot k} + T_b \frac{p_b^{\mu}}{p_b \cdot k}$$

$$(2\pi)^2 \omega \frac{dN_{\rm a}}{d^3k} = \frac{\alpha_s}{\omega^2} \left[C_{\rm b} \left(\mathcal{R}_{\rm b} - \mathcal{J} \right) + ({\rm b} \to {\rm c}) + C_{\rm a} \mathcal{J} \right]$$

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

gluon radiation off a pair of color charges b and c which

originates from a (highly virtual) charge a

classical current

$$J^{\mu} = T_a \frac{p_a^{\mu}}{p_a \cdot k} + T_b \frac{p_b^{\mu}}{p_b \cdot k}$$

direct emission

$$(2\pi)^2 \omega \frac{dN_{\rm a}}{d^3k} = \frac{\alpha_s}{\omega^2} \left[C_{\rm b} \left(\mathcal{R}_{\rm b} - \mathcal{J} \right) + ({\rm b} \to {\rm c}) + C_{\rm a} \mathcal{J} \right]$$

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

gluon radiation off a pair of color charges b and c which

originates from a (highly virtual) charge a

classical current

$$J^{\mu} = T_a \frac{p_a^{\mu}}{p_a \cdot k} + T_b \frac{p_b^{\mu}}{p_b \cdot k}$$

direct emission

interference

$$(2\pi)^2 \omega \frac{dN_{\rm a}}{d^3k} = \frac{\alpha_s}{\omega^2} \left[C_{\rm b} \left(\mathcal{R}_{\rm b} - \mathcal{J} \right) + ({\rm b} \to {\rm c}) + C_{\rm a} \mathcal{J} \right]$$

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

gluon radiation off a pair of color charges b and c which

originates from a (highly virtual) charge a

classical current

$$J^{\mu} = T_a \frac{p_a^{\mu}}{p_a \cdot k} + T_b \frac{p_b^{\mu}}{p_b \cdot k}$$

direct emission

$$(2\pi)^2 \omega \frac{dN_{\rm a}}{d^3k} = \frac{\alpha_s}{\omega^2} \left[C_{\rm b} \left(\mathcal{R}_{\rm b} - \mathcal{J} \right) + ({\rm b} \to {\rm c}) + C_{\rm a} \mathcal{J} \right]$$

For
$$g \rightarrow qq$$
 $C_b = C_c = C_F$ and $C_a = C_A$
For $\gamma \rightarrow qq$ $C_b = C_c = C_F$ and $C_a = 0$

$$C_{\rm b} = C_{\rm c} = C_F$$
 and

$$C_{\rm b} = C_{\rm c} = C_F$$
 and

$$C_{\mathbf{a}} = C_A$$

$$C_{\rm a}=0$$

COLOR COHERENCE (BUILDING BLOCK OF QCD EVOLUTION)

Incoherent emissions at small angles

$$\omega \frac{dN_{\rm a}}{d\omega d^2 k_{\perp}} \propto \frac{\alpha_s C_{\rm b}}{k_{\perp}^2} + (b \to c) \quad \theta \ll \theta_{bc} \quad (k_{\perp} \ll \omega \theta_{bc})$$

large angle emission by the total charge

$$\omega \frac{dN_{\rm a}}{d\omega d^2 k_{\perp}} \propto \frac{\alpha_s C_{\rm a}}{k_{\perp}^2}$$
 $\theta \gg \theta_{bc} \quad (k_{\perp} \gg \omega \theta_{bc})$

ANTENNA IN VACUUM (BUILDING BLOCK OF QCD EVOLUTION)

$$dN_{q,\gamma^*}^{\text{vac}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta}{1 - \cos\theta} \Theta(\cos\theta - \cos\theta_{q\bar{q}}),$$

Angular ordering in vacuum

- Radiation confined inside the cone
- Why?

gluons emitted at angles larger than the pair opening angle cannot resolve its internal structure: Emission by the total charge (suppressed for a white antenna)

$$\lambda_{\perp} > r_{\perp} \implies \theta > \theta_{q\bar{q}}$$

gluon transverse wave length

$$\lambda_{\perp} \sim \frac{1}{k_{\perp}}$$

antenna size at formation time

$$r_{\perp} \sim t_f \theta_{q\bar{q}} \sim \frac{\omega}{k_{\perp}^2} \theta_{q\bar{q}}$$

(Soft-gluon insertion techniques)

Singlet antenna as a building block of jet evolution: factorization of soft gluon emissions in large Nc (resummation of soft gluon logs)

(Soft-gluon insertion techniques)

Singlet antenna as a building block of jet evolution: factorization of soft gluon emissions in large Nc (resummation of soft gluon logs)

(Soft-gluon insertion techniques)

Singlet antenna as a building block of jet evolution: factorization of soft gluon emissions in large Nc (resummation of soft gluon logs)

(Angular Ordering)

COLOR COHERENCE

(Soft-gluon insertion techniques)

Singlet antenna as a building block of jet evolution: factorization of soft gluon emissions in large Nc (resummation of soft gluon logs)

(Soft-gluon insertion techniques)

Singlet antenna as a building block of jet evolution: factorization of soft

In the soft sector color coherence suppresses large angle gluon emissions. $C_0 \ll \sum_i C_i$

Modified-Leading-Log-Approximation (MLLA)

Fragmentation function

Recall DGLAP (no-angular ordering)

$$\frac{d}{d\ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_C^B(x/z, \mathbf{M}_{\perp})$$

Modified-Leading-Log-Approximation (MLLA)

Fragmentation function

MLLA (angular ordering)

$$\frac{d}{d \ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_C^B(x/z, \mathbf{z} M_{\perp})$$

$$\theta' \sim \theta_{jet} \to M_{\perp}' = \omega' \theta' \sim \omega' \theta_{jet} = z M_{\perp}$$

Modified-Leading-Log-Approximation (MLLA) Fragmentation function

$$\frac{d}{d \ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_C^B(x/z, z M_{\perp})$$

TASSO Collaboration, Z. Phys. C 47 (1990) 187 OPAL Collaboration, Phys. Lett. B 247 (1990) 617

- What is the space-time structure of in-medium jets?

- Resummation scheme? ordering variable? probabilistic picture?

MEDIUM-INDUCED GLUON RADIATION (LPM)-LONGITUDINAL COHERENCE

Zakharov (1996) Baier, Dokshitzer, Mueller, Peigné, Schiff (1997)
Gyulassy, Levai, Vitev (2000)
Wiedemman (2001)
Arnold, Moore, Yaffe (2002)

In-medium radiative energy loss of hard partons

Medium described by a static background field

[Gyulassy, Wang (1994)]

$$V^{2}(q_{\perp}) = \frac{m_{D}^{2}}{q_{\perp}^{2}(q_{\perp}^{2} + m_{D}^{2})}$$

[Arnold, Moore, Yaffe (2002)]

n(t) : density of scatterers

$$\langle A_a^-(t,q_\perp) A_b^-(t',q'_\perp) \rangle = n(t) \delta_{ab} \, \delta(t-t') \, \delta(q_\perp - q'_\perp) \, V^2(q_\perp)$$

No energy transfer.

Dynamical medium?

In-medium radiative energy loss of hard partons

quark eikonal trajectory

$$U(0_{\perp}, t) = \mathcal{P} \exp \left[ig \int_0^t d\xi \, A^-(\xi, 0_{\perp}) \right]$$

Gluon prop.: Brownian motion in transverse plane

$$\mathcal{G}\left(x^{+}, m{x}; y^{+}, m{y} | k^{+}
ight) = \int \mathcal{D}[m{r}] \, \exp\left[irac{k^{+}}{2} \int_{y^{+}}^{x^{+}} d\xi \, \dot{m{r}}^{2}(\xi)
ight] U(x^{+}, y^{+}; [m{r}])$$

Amplitude X (Amplitude)*

the medium does not resolve the gluon dipole when the transverse size of the pair is smaller than the medium resolution

$$r_{\perp}^{2}(\Delta t) < \frac{1}{\hat{q}\,\Delta t}$$
$$k_{\perp}^{2} \sim \hat{q}\Delta t$$

This implies that the gluon decoheres from the quark-antiquark octet after a time

$$t_f = \sqrt{\frac{\omega}{\hat{q}}}$$

$$(2\pi)^2 \omega \frac{dN}{d\omega d^2 \mathbf{k}} = \frac{4C_F \alpha_s}{\omega} \int_0^L dt \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \mathcal{P}(\mathbf{k} - \mathbf{q}, L - t) \sin\left(\frac{\mathbf{q}^2}{2\mathbf{k}_{\rm br}^2}\right) \exp\left(-\frac{\mathbf{q}^2}{2\mathbf{k}_{\rm br}^2}\right)$$

- prob. of acquiring mom. k after ξ $\mathcal{P}(k,\xi) = \frac{4\pi}{\hat{q}\,\xi}e^{-\frac{k^2}{\hat{q}\,\xi}}$
- ullet branching time $\,t_{
 m br}$

Mean Energy loss

$$\Delta E \sim \alpha_s \, \hat{q} \, L^2$$

Static scat. centers

MEDIUM-INDUCED GLUON RADIATION

$$(2\pi)^2 \omega \frac{dN}{d\omega d^2 \mathbf{k}} = \frac{4C_F \alpha_s}{\omega} \int_0^L dt \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \mathcal{P}(\mathbf{k} - \mathbf{q}, L - t) \sin\left(\frac{\mathbf{q}^2}{2\mathbf{k}_{\mathrm{br}}^2}\right) \exp\left(-\frac{\mathbf{q}^2}{2\mathbf{k}_{\mathrm{br}}^2}\right)$$

- prob. of acquiring mom. k after ξ $\mathcal{P}(k,\xi) = \frac{4\pi}{\hat{q}\,\xi}e^{-\frac{k^2}{\hat{q}\,\xi}}$
- ullet branching time $\,t_{
 m br}$

$$\mathcal{P}(\mathbf{k},\xi) = \frac{4\pi}{\hat{q}\,\xi} e^{-\frac{\mathbf{k}^2}{\hat{q}\,\xi}}$$

Static scat. centers

Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (19

$$\omega \frac{dN}{d\omega} = \frac{C_F \alpha_s}{\pi} \sqrt{\frac{\hat{q}L^2}{\omega}} \propto \alpha_s \frac{L}{t_{\rm br}}$$

Mean Energy loss

$$\Delta E \sim \alpha_s \, \hat{q} \, L^2$$

 $t_{
m br} = \sqrt{\omega/\hat{q}}$ classical

broadening!

RADIATIVE ENERGY LOSS POISSON DISTRIBUTION

Independent gluon emissions: probability that a hard parton loses a total energy ϵ by radiating an arbitrary number of gluons

$$P(\epsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dN(\omega_i)}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_i\right) \exp\left[\int_0^{\infty} d\omega \frac{dN}{d\omega} \right]$$

Better treatment than the mean energy loss Medium modified FF's

$$x = \epsilon/E$$

$$D_{med}(z, Q^2) = \int dx P(x) \frac{1}{1-x} D_{vac} \left(\frac{z}{1-x}, Q^2 \right)$$

How about coherence phenomena? more exclusive observables?

THE ANTENNA RADIATION PATTERN IN MEDIUM (DE)COHERENCE

SPACE-TIME STRUCTURE OF IN-MEDIUM INTERFERENCES

 ${\mathcal R}\,$: direct emission - BDMPS spectrum - anywhere up to L

 \mathcal{J} : interferences \Rightarrow

interferences depend on the decoherence parameter

$$\Delta_{\text{med}} = 1 - \frac{1}{N_c^2 - 1} \langle \mathbf{Tr} \, U_p(t, 0) U_{\bar{p}}^{\dagger}(t, 0) \rangle \approx 1 - e^{-\frac{1}{12} \hat{q} \theta^2 t^3}$$

decoherence time

only gluons formed at $\,t < t_d \, \equiv \, (\hat{q}\, \theta_{q\bar{q}}^2)^{-1/3}\,\,$ interfere

⇒ Suppression of interferences

ONSET OF DECOHERENCE

- SOFT GLUONS

$$\Delta_{
m med} \equiv \Delta_{
m med}(L)$$
 $\Delta_{
m med} o 0$ Coherence

 $\Delta_{\mathrm{med}} \to 1$ Decoherence

$$dN_{q,\gamma^*}^{\rm tot} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\rm med} \Theta(\cos\theta_{q\bar{q}} - \cos\theta) \right] \ .$$

⇒ geometrical separation!

$$dN_{q,\gamma^*}^{\mathrm{tot}} \Big|_{\mathrm{opaque}} = rac{lpha_s C_F}{\pi} rac{d\omega}{\omega} rac{\sin heta}{1 - \cos heta} \,.$$
 and gluon!

- I) Independent emissions!
- 2) "Memory loss" effect

HARD SCALES IN THE PROBLEM

$$Q_s^2 = \hat{q} L$$

$$r_{\perp} = \theta_{q\bar{q}} L$$

- a two scale problem!

•
$$r_{\perp} > Q_s^{-1}$$
 (Decoh. regime)
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$\tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

$$\Delta_{\rm med} \approx 1 - \exp\left[-\frac{1}{12} Q_s^2 r_\perp^2\right]$$

$$r_{\perp} = \theta_{q\bar{q}} L$$

Q_s: characteristic momentum scale of the medium

HARD SCALES IN THE PROBLEM

$$Q_s^2 = \hat{q} L$$

$$r_{\perp} = \theta_{q\bar{q}} L$$

- a two scale problem!

$$\Delta_{\rm med} \approx 1 - \exp\left[-\frac{1}{12} Q_s^2 r_\perp^2\right]$$

Q_s: characteristic momentum scale of the medium

HARD SCALES IN THE PROBLEM

Gluon spectrum characterized by the hardest scale in the problem

$$Q_{\text{hard}} = \max\left(r_{\perp}^{-1}, Q_s\right)$$

$$Q_s^2 = \hat{q} L \qquad \qquad r_\perp = \theta_{q\bar{q}} L$$

medium-induced color randomization destroys the coherence of the antenna and opens up phase space for gluon radiation at large angles

for gluon momentum $k_{\perp} > Q_{\rm hard}$ the spectrum is suppressed and coherence is restored

√ The system cannot induce radiations harder than the intrinsic scales of the problem

ONSET OF DECOHERENCE - FINITE GLUON ENERGIES

$$Q_{\mathrm{hard}} = \max\left(r_{\perp}^{-1}, Q_{s}\right)$$

In terms of angular variables:

Vacuum: Independent emissions for $\theta < \theta_{q\bar{q}}$ Emission off the total charge otherwise (coherence)

Full decoherence: Independent emissions for $\theta < \theta_{\rm med} = \frac{Q_s}{\omega}$ Emission off the total charge otherwise (coherence)

⇒ In the opaque limit, simple shift of the angular constraint!

WHAT WE HAVE LEARNED

Color transparency for $r_{\perp} < Q_s^{-1}$ or $\theta_{jet} < \theta_c \sim \frac{1}{\sqrt{\hat{q}L^3}}$

Decoherence $r_{\perp} > Q_s^{-1}$

WHAT WE HAVE LEARNED

Vacuum-like jets Color coherence High virtuality

inmedium jet evolution Medium dynamics

Antenna in medium
Decoherence

Energy loss:
Medium-induced 1gluon emission
(Collisional EL)

CONCLUSION

- Need improvement of the standard picture of energy loss: medium dynamics, collisional +radiative, large angle soft radiation.
- Developing a complete theory of jets as probes of the medium:
- Understanding hard scale interplay. (regimes)
- Space-time picture of jet evolution (multiparton branching): resummation scheme, Factorization, probabilistic picture? (see Fabio's talk)

FACTORIZATION IN THE OPAQUE LIMIT (TOTAL DECOHERENCE)

J.-P. Blaizot, F. Dominguez, E. Iancu, Y. M.-T. (in preparation)

decoherence time

formation time

$$t_{\rm d} = (\hat{q}\,\theta_{gg}^2)^{-1/3}$$

$$t_{
m f} = \sqrt{rac{\omega}{\hat{q}}}$$

typical angle for medium-induced gluon $\theta_{gg} = \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$

$$\theta_{gg} = \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$$

$$t_{\rm d} \equiv t_{\rm f}$$

incoherent emissions

decoherence time

formation time

$$t_{\rm d} = (\hat{q}\,\theta_{gg}^2)^{-1/3}$$

$$t_{
m f} = \sqrt{rac{\omega}{\hat{q}}}$$

typical angle for medium-induced gluon

$$t_{\rm d} \equiv t_{\rm f}$$

incoherent emissions

decoherence time

$$t_{\rm d} = (\hat{q}\,\theta_{gg}^2)^{-1/3}$$

formation time

$$t_{\rm f} = \sqrt{\frac{\omega}{\hat{q}}}$$

See F. Dominguez's talk (wednesday)

decoherence time

$$t_{\rm d} = (\hat{q}\,\theta_{gg}^2)^{-1/3}$$

formation time

$$t_{\mathrm{f}} = \sqrt{\frac{\omega}{\hat{q}}}$$

See F. Dominguez's talk (wednesday)

incoherent emissions

decoherence time

$$t_{\rm d} = (\hat{q}\,\theta_{gg}^2)^{-1/3}$$

formation time

$$t_{\mathrm{f}} = \sqrt{\frac{\omega}{\hat{q}}}$$

⇒ Probabilistic Scheme

$$\sigma = \sum_{n} a_n \left(\alpha_s \frac{L}{t_{\rm br}} \right)^n$$

See F. Dominguez's talk (wednesday)

incoherent emissions