#### Jet reconstruction: discussion

Peter Jacobs, LBNL

# ALICE: inclusive jet cross section in 2.76 TeV p+p





- Statistics are limiting
- Use part of upcoming run for more p+p @ 2.76??
  - Next opportunity is 2015 (!)
  - How to prioritize vis a vis p+Pb?

(Side comment: p+Pb also not at 2.76)





### Heavy ion jet reconstruction strategy: ALICE

Minimize jet reconstruction biases  $\rightarrow$  avoid *ad hoc* modification of events

- no pedestal subtraction
- Minimal cuts on constituents ( $p_T > 150 \text{ MeV}$ )
- No hard fragmentation bias to suppress background (for certain observables)
- Low material budget
  - Uniform response within acceptance

Bkgd fluctuations corrected entirely on ensemble basis via unfolding:

- Measured using embedding (universal  $\delta p_T$  distibutions)
  - Very broad due to low cut on constituent p<sub>T</sub>
  - Challenging measurement
- $\rho$  is single scalar for each event
- $v_2$  (etc.) fluctuations accounted for on ensemble basis (reaction plane-dependent  $\delta p_T$ )

#### Heavy ion jet reconstruction strategy: ATLAS

A. Angerami, QM12

Perform event-by-event subtraction per calorimeter cell in jet

$$E_{\mathrm{T}j}^{\mathrm{\,sub}} = E_{\mathrm{T}j} - A_j \; \rho_i(\eta_j) \left(1 + 2v_{2i} \cos\left[2\left(\phi_j - \Psi_2\right)\right]\right) \quad \text{indices:} \quad \text{i for cell if for layer}$$

- Average, η-dependent background E<sub>T</sub> density: ρ
- Elliptic flow modulation:  $\eta$  and  $p_T$  averaged  $v_2$ 
  - Jet energy unaffected by global elliptic flow
- Two-step procedure to prevent jets from biasing subtraction
  - Define jet "seeds" and exclude from ρ and v<sub>2</sub> determination

#### Heavy ion jet reconstruction strategy: CMS I

M. Nguyen, QM12



- Information from all sub-detectors are combined into particle candidates → "Particle flow" event reconstruction [1-2]
- Allows to exploit the excellent resolution of the tracker for the charged hadron component of the jet
- Also includes a fully consistent treatment of electron and muons inside jets
- Particle candidates combined into towers in order to subtract the heavy-ion background

[2] CMS-PAS-PFT-09-001

#### Heavy ion jet reconstruction strategy: CMS II

M. Nguyen, QM12



## Jet reconstruction: generic features

|                              | ALICE                                                      | ATLAS                       | CMS                                                |
|------------------------------|------------------------------------------------------------|-----------------------------|----------------------------------------------------|
| Clustering algorithm         | Anti-kT                                                    | Anti-kT                     | Anti-kT                                            |
| Acceptance                   | η <0.5, full azimuth (charged), 25% of azimuth (full jets) | $ \eta $ <2.1, full azimuth | $ \eta $ <2.0, full azimuth                        |
| Jet constituents             | Charged tracks + EM clusters                               | EM+HA calorimetry           | Particle flow: EM+HA calorimetry, charged tracking |
| Jet energy resolution in p+p | 18% @ 100 GeV                                              | 12% (?) @ 100 GeV           | 13% @ 100 GeV                                      |

## Jet reconstruction: heavy ion-specific

|                                                     | ALICE                                              | ATLAS                                                                  | CMS                                                                |
|-----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|
| Max R in heavy ions (thus far)                      | 0.4                                                | 0.5                                                                    | 0.5                                                                |
| Pre-clustering pedestal subtraction                 | No                                                 | No                                                                     | Yes                                                                |
| ρ estimate                                          | Scalar for event;<br>Jet exclusion<br>optional     | η rings, hard jets excluded                                            | η rings, hard jets excluded                                        |
| Correction for background v <sub>2</sub>            | Ensemble-level (rxn plane dependent $\delta p_T$ ) | $\rho$ modulated event-by-<br>event by $p_T$ -averaged $v_2$           | Not yet implemented                                                |
| Hard fragmentation cut                              | Depends on observable                              | Yes: track jet or EM cluster>7 GeV (tracks have p <sub>T</sub> >4 GeV) | No                                                                 |
| Effective constituent p <sub>T</sub> cut            | 0.15 GeV                                           | Smooth turn-on: low p <sub>T</sub> calorimeter response                | Smooth turn-on: low p <sub>T</sub> calorimeter + tracking response |
| σ of background fluctuations (central Pb+Pb, R=0.4) | 11 GeV (charged) ~16 GeV (full)                    | 10 GeV (full)                                                          | 5.2 GeV (R=0.3)                                                    |

PostQM Jet Meeting WSU

## Jet Fragmentation Function



- PbPb peripheral events in good agreement with pp
- Expected but non-trivial

$$(z = \frac{p_{\parallel}^{\text{track}}}{p_{\parallel}^{\text{jet}}})$$





## Jet Fragmentation Function



- PbPb peripheral events in good agreement with pp
- Expected but non-trivial

( 
$$z = \frac{p_{\parallel}^{\text{track}}}{p^{\text{jet}}}$$
 )



