Jet reconstruction: discussion

Peter Jacobs, LBNL

ALICE: inclusive jet cross section in $2.76 \mathrm{TeV} \mathrm{p}+\mathrm{p}$

- From 3-day run in March 2011
- Statistics are limiting
- Use part of upcoming run for more $\mathrm{p}+\mathrm{p}$ (2.76??
- Next opportunity is 2015 (!)
- How to prioritize vis a vis $\mathrm{p}+\mathrm{Pb}$?
(Side comment: $\mathrm{p}+\mathrm{Pb}$ also not at 2.76)

Heavy ion jet reconstruction strategy: ALICE

Minimize jet reconstruction biases \rightarrow avoid ad hoc modification of events

- no pedestal subtraction
- Minimal cuts on constituents $\left(\mathrm{p}_{\mathrm{T}}>150 \mathrm{MeV}\right)$
- No hard fragmentation bias to suppress background (for certain observables)
- Low material budget
- Uniform response within acceptance

Bkgd fluctuations corrected entirely on ensemble basis via unfolding:

- Measured using embedding (universal $\delta \mathrm{p}_{\mathrm{T}}$ distibutions)
- Very broad due to low cut on constituent p_{T}
- Challenging measurement
- $\quad \rho$ is single scalar for each event
- v_{2} (etc.) fluctuations accounted for on ensemble basis (reaction plane-dependent δp_{T})

Heavy ion jet reconstruction strategy: ATLAS

A. Angerami, QM12

- Perform event-by-event subtraction per calorimeter cell in jet

$$
E_{\mathrm{T}}^{\mathrm{sub}}=E_{\mathrm{T} j}-A_{j} \rho_{i}\left(\eta_{j}\right)\left(1+2 v_{2 i} \cos \left[2\left(\phi_{j}-\Psi_{2}\right)\right]\right) \quad \begin{aligned}
& \text { indices: } \\
& \text { i for cell } \\
& \mathrm{j} \text { for layer }
\end{aligned}
$$

- Average, η-dependent background E_{T} density: ρ
- Elliptic flow modulation: η and p_{T} averaged v_{2}
- Jet energy unaffected by global elliptic flow
- Two-step procedure to prevent jets from biasing subtraction
- Define jet "seeds" and exclude from ρ and v_{2} determination

Heavy ion jet reconstruction strategy: CMS I

M. Nguyen, QM12

Heavy ion jet reconstruction strategy: CMS II M. Nguyen, QM12

Jet reconstruction: generic features

	ALICE	ATLAS	CMS
Clustering algorithm	Anti-kT	Anti-kT	Anti-kT
Acceptance	$\|\eta\|<0.5$, full azimuth (charged), 25\% of azimuth (full jets)	$\|\eta\|<2.1$, full azimuth	$\|\eta\|<2.0$, full azimuth
Jet constituents Charged tracks + EM clusters EM+HA calorimetry	Particle flow: EM+HA calorimetry, charged tracking		
Jet energy resolution in p+p	$18 \% @ 100 \mathrm{GeV}$	$12 \%(?) @ 100 \mathrm{GeV}$	$13 \% @ 100 \mathrm{GeV}$

Jet reconstruction: heavy ion-specific

	ALICE	ATLAS	CMS
Max R in heavy ions (thus far)	0.4	0.5	0.5
Pre-clustering pedestal subtraction	No	No	Yes
ρ estimate	Scalar for event; Jet exclusion optional	η rings, hard jets excluded	η rings, hard jets excluded
Correction for background v_{2}	Ensemble-level (rxn plane dependent $\left.\delta p_{\mathrm{T}}\right)$	ρ modulated event-by- event by p_{T}-averaged v_{2}	Not yet implemented
Hard fragmentation cut	Depends on observable	Yes: track jet or EM cluster $>7 \mathrm{GeV}$ (tracks have $\left.\mathrm{p}_{\mathrm{T}}>4 \mathrm{GeV}\right)$	No
Effective constituent p_{T} cut	0.15 GeV	Smooth turn-on: low p_{T} calorimeter response	Smooth turn-on: low p_{T} calorimeter + tracking response
σ of background fluctuations (central Pb+Pb, R=0.4)	11 GeV (charged) $\sim 16 \mathrm{GeV}$ (full)	10 GeV (full)	5.2 GeV (R=0.3)

Jet Fragmentation Function

- PbPb peripheral events in good agreement with pp
- Expected but non-trivial

Jet Fragmentation Function

- PbPb peripheral events in good agreement with pp
- Expected but non-trivial

