Direct photon/W/Z overview at RHIC and LHC

Yen-Jie Lee (CERN)

Yen-Jie Lee (CERN)

JetMod@Wayne

Electroweak probes

- The questions we want to answer with electroweak probes:
 - Thermalized system in AA collisions?
 - Low p_T thermal photons, compare pp and AA
 - Validity of N_{coll} scaling of hard process and nPDF?
 - Check the validity of $N_{\mbox{coll}}$ calculation (ex. from Glauber Model)
 - Constraint the nPDF:
 - "Trivial modification": isospin effect
 - Modifications: shadowing effect, etc.
 - Reference for the jet quenching studies?
 - High p_T photon R_{AA}
 - Impact of the isolation requirement

Electroweak probes in RHIC and LHC

- RHIC data:
 - Direct photons from PHENIX
- LHC data:
 - Direct photons from ALICE at low $\ensuremath{p_{\mathsf{T}}}$
 - Isolated photons at high $\ensuremath{p_{\text{T}}}$
 - Z boson production
 - W boson production

Direct photons at RHIC

PHENIX preliminary result of direct photons R_{AA} at high p_T

Direct photons at RHIC

• PHENIX final result of direct photons R_{AA} at high p_T

- Consistent with calculation with nPDF
- Isospin effect is seen at high \mathbf{p}_{T}

Direct photons in dAu and AuAu

arXiv:1208.1234

R_{dA} is consistent with unity

Large excess of γ observed in Au+Au is not due to initial state effects

Itzhak Tserruya, QM2012

Direct photons v₂ in AuAu collision

- Large v₂ at p_T < 4 GeV/c where thermal photons dominate
- v₂ consistent with 0 at high p_T where prompt photons domininate

Large v_2 implies late emission whereas thermal radiation implies early emission

Direct photons at LHC

JetMod@Wayne

Summary of direct photon measurements

- PHENIX updated the photon R_{AA} with pp reference, consistent with nPDF prediction
- No significant exceeds at low $\ensuremath{\mathsf{p}_{\mathsf{T}}}$ in dAu collisions
- ALICE result: hint of hotter QGP in LHC
- Puzzling results from low p_T direct photon v_2

Constrain the nPDF

- Good theoretical control on high p_T photons, Z and W bosons
- Need multiple channels and $p_{\rm T}$ dependent studies to distinguish if the problem is from $N_{\rm coll}$ scaling or nPDF
 - W boson: isospin effect in muon charge asymmetry
 - Expected modification of high p_T photon and Z production at the LHC energy due to nPDF: 0-20% level

W boson

W boson R_{AA}

CMS $R_{AA}(W) = 1.04 \pm 0.07 \pm 0.12$

• Normalized yield does not vary as a function of centrality

Centrality independence

Yen-Jie Lee (CERN)

W boson production

@ LO :
$$u\bar{d} \rightarrow W^+$$
 & $\bar{u}d \rightarrow W^-$

- \rightarrow Less W⁺ and more W⁻ in PbPb than in pp (*isospin* effect)
 - Cancels for W⁺ + W⁻

W boson production

@ LO :
$$u\bar{d} \rightarrow W^+$$
 & $\bar{u}d \rightarrow W^-$

- → Less W⁺ and more W⁻ in PbPb than in pp (*isospin* effect)
 - Cancels for W⁺ + W⁻
- W boosted towards the valence quark (higher rapidity)
- Spin conservation $\rightarrow \mu^+ (\mu^-)$ boosted back to (away from) midrapidity

→Different muon rapidity distributions (not heavy-ion specific) between W⁺ and W⁻

Muon charge asymmetry

Less up quarks make less W⁺ in PbPb than in pp

Isospin effect bringing down asymmetry by 0.2 to 0.4 (EPS09 modifications are 0.03 at most)

Z boson production in PbPb collisions

JetMod@Wayne

Z boson production in PbPb collisions

CMS-PAS-HIN-12-008

ATLAS-CONF-2012-119

Z boson production in PbPb collisions

CMS-PAS-HIN-12-008 x10⁻⁸ d²N/dydp_T (GeV/c)⁻¹ CMS PbPb Preliminary 150.0 μb^{-1} at $\sqrt{s_{NN}}$ = 2.76 TeV CMS, |y|<2.0 Systematic Uncertainty POWHEG (± 5%) x TAA (± 6%) 10-1 10⁻² <u>10-2</u> Transverse momentum (GeV/c) • Z p_T distribution is consistent

with POWHEG prediction

ATLAS-CONF-2012-119

• Normalized yield is not varying as a function of centrality for all Z p_T ranges

Dependence on y and p_T

• No strong deviation from absolutely-normalised reference from both experiment

Shadowing effects on Z production

• No strong deviation from the EPS09+isospin reference

ATLAS vs CMS corrected yields

- ATLAS: 1223 Z $\rightarrow \mu \mu$
- CMS: 616 Z→ μ μ
- Comparison between CMS and ATLAS
 - positive-negative rapidity averaged ATLAS result
 - Systematics not displayed (comparable to statistics)
- 80-100% centrality rescaled to 0-100%
 - $N_{coll}(0-80\%) / N_{coll} (0-100\%)$ = 452 / 363 = 1.24
- Significant tension, especially at small rapidity

JetMod@Wayne

Summary from W and Z bosons

- W boson muon charge asymmetry:
 - Sensitive to isospin effect
 - Consistent with MCFM expectation

- Z boson:
 - Very clean signal from di-electron and di-muon channels
 - Significant tension between CMS and ATLAS, especially in mid-rapditiy
 - R_{AA} ~ 1 from both experiment, but use different theoretical references (POWHEG vs. "PYTHIA NNLO")

Isolated photons at LHC

Photons

- Ideally: LO photons from hard scattering
- Real world:

huge background from decay and fragmentation photons

• Need a consistent definition between measurements and theoretical calculations

Isolated high p_T photons

- Solution: measurement of the isolated photons
- Decay photons from hadrons in jets such as π^{0} , $\eta \rightarrow \gamma \gamma$ are largely suppressed
- UE subtracted isolation variables are developed

Isolated photon measurements

	CMS	ATLAS	
Pseudorapidity	 η <1.4 4	η <1.3	
Transverse Energy	>20 GeV	>45 GeV	
Isolation requirement	E⊤<5 GeV in ∆R<0.4	E⊤<6 GeV in ∆R<0.3	

Analysis procedure

Background subtraction in PbPb

In PbPb collisions, almost *no* photons are isolated due to other particles from the underlying event 40 35 30 CMS: Use the mean E_{τ} per unit €25 area in an η strip to subtract background inside the isolation cone $\triangle R < 0.4$ ATLAS: using the same subtraction method as jet reconstruction 0.5 (Ψ_2 and v_2 measured by FCAL)

 $E_{\mathrm{T}_{j}^{\mathrm{sub}}} = E_{\mathrm{T}_{j}} - A_{j} \rho_{i}(\eta_{j}) \left(1 + 2v_{2i} \cos\left[2\left(\phi_{j} - \Psi_{2}\right)\right]\right)$

Photon isolation criteria in CMS

Generator level: $\Delta R < 0.4$ $\Sigma E_T^{IsoCone} < 5 GeV$ with only particles from the same hard scattering

Γ Solated photon

CMS data: $\Delta R < 0.4$ $\Sigma E_T^{IsoCone} < 5 GeV$ using the calorimeter $\Delta \varphi$ and tracker minus background

Non-isolated photon

Photon isolation criteria in ATLAS

- ATLAS photon isolation:
 - E_T(R_{iso}=0.3) transverse energy in a cone of R_{iso} around the photon axis
 - UE energy fluctuations and di-jet background
 - Width of E_T(R_{iso}=0.3) in 0-10% photon+jet events is 6 GeV
 - Isolation requirement: E_T(R_{iso}=0.3) < 6 GeV

Effect of photon isolation from JETPHOX

JETPHOX calculation with different isolation requirement within a cone of R=0.4 and photon $|\eta| < 1.44$

Variation from Iso<5 to Iso<20 cause ~3-9% change in the crosssection calculation

Removing decay photons

CMS ECAL's fine segmentation $\Delta \eta \times \Delta \Phi = 0.0174 \times 0.0174$ Define a "width" parameter:

Removing decay photons

Yen-Jie Lee (CERN)

Details of removing decay photons

A technique also used in CMS pp analysis:

Signal template: obtained from PYTHIA+MinBias data

Decay template: Using a data-driven method with non-isolated photons: ΔR <0.4, 6 GeV < $\Sigma E_T^{IsoCone}$ < 11 GeV

Fitting signal+decay photons

Signal template and background (decay) template extracted in separate bins of photon E_T and collision centrality

PLB 710 (2012) 256

Photon E_T spectra in pp and PbPb

Reconstructed photon spectra scaled by T_{AA}

Consistent with JETPHOX using pp PDF (CT10).

Isolated photon R_{AA}

- Results are consistent between ATLAS and CMS
- No modification of the photons (within 20-40%)

JetMod@Wayne

Isolated photon R_{AA} vs E_T & Centrality

Yen-Jie Lee (CERN)

Isolated photon R_{AA} vs E_T & Centrality

ATLAS-CONF-2012-119

JetMod@Wayne

Systematic uncertainties (CMS)

	pp	PbPb centrality		
Source		0–10%	10-30%	30-100%
Efficiency	1-5%	5-9%	5-7%	5–6%
Signal modeling	3–5%	1-5%	3-5%	1-4%
Background modeling	9–13%	15-23%	14-16%	12-21%
Electron veto	1%	3-6%	3–5%	3–5%
Photon isolation definition	2%	7%	5%	2%
Energy scale	3–6%	9%	9%	9%
Energy smearing	1%	4%	4%	4%
Shower-shape fit	3%	5%	5%	5%
Anomalous signal cleaning	1%	1%	1%	1%
$N_{\rm MB}$	—	3%	3%	3%
Luminosity	6%		_	
Total without T_{AA}	14–16%	23-30%	22-25%	23– <mark>28</mark> %
T_{AA}	-	4%	6%	12%
Total	14–16%	23-30%	23–26%	26-31%

Main sources of systematic uncertainties: Background modeling and photon energy scale

Systematic uncertainties (CMS)

	i	pp		PbPb centrality	
	Source		0–10%	10-30%	30-100%
	Efficiency	1-5%	5–9%	5–7%	5-6%
	Signal modeling	3–5%	1-5%	3-5%	1-4%
→	Background modeling	9–13%	15-23%	14-16%	12-21%
	Electron veto	1%	3-6%	3-5%	3–5%
	Photon isolation definition	2%	7%	5%	2%
→	Energy scale	3–6%	9%	9%	9%
	Energy smearing	1%	4%	4%	4%
	Shower-shape fit	3%	5%	5%	5%
	Anomalous signal cleaning	1%	1%	1%	1%
	$N_{\rm MB}$	—	3%	3%	3%
	Luminosity	6%		—	17 <u>-00</u> 1
	Total without T_{AA}	14–16%	23-30%	22-25%	23-28%
	T_{AA}	_	4%	6%	12%
	Total	14–16%	23-30%	23-26%	26-31%

Background modeling → data driven, can be reduced by adding more statistics

Photon energy scale \rightarrow control sample from Z \rightarrow ee and event mixing

Summary of isolated photons

- Input to nPDF:
 - Isolated photons are not modified (within 20-40% systematical uncertainty)
 - Systematic uncertainty is ~ nPDF uncertainty
 - Possible future improvements on the systematics on the background modeling and photon energy scale
- Good agreement between ATLAS and CMS results
- Input to jet quenching studies:
 - Pro: higher statistics, Con: large background
 - Need to take care of the possible bias due to the isolation requirement in jet quenching studies (ex: photon-hadron correlation, medium response)

JetMod@Wayne

Backup slides

Direct photons at RHIC

Photon performance: shower shapes

Comparison of tight photons with fully simulated photon+jet events, total MC (yellow), unconverted (blue), and converted (red) photons. Small p_T and n dependent shifts (from pp) applied to MC.

JetMod@Wayne

