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Color Coherence
Jets in vacuum

• Angular ordering implies 
jets are highly collimated

• Fundamental to understand 
jet fragmentation

Jets in medium

• Antenna radiation shows 
two regimes depending on 
opening angle

★ Coherent regime where 
medium cannot resolve inner 
structure

★ Full decoherence: independent 
emissions

Understanding decoherence is fundamental to understand 
modified jet fragmentation



Single medium-induced gluon 
emission

• BDMPS-Z formalism

✦ Emitted gluons acquire transverse momenta 
through multiple scatterings with the medium
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Formation time

• Medium-induced emission 
can happen anywhere in 
the medium

• Medium contribution 
scales like the length of the 
medium

• Formation time refers to 
the time it takes to 
decorrelate the gluon from 
the parent parton

• Emitted gluons take time 
to pick up transverse 
momentum

• Soft gluons are emitted at 
large angles

• Soft gluons decorrelate 
faster



From single emission to 
multiple branchings

• Soft emissions not necessarily come from 
leading parton

Relax eikonal approximation

• Determine the role of interferences

Relation between decoherence time and 
formation time
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Structure of gluon branching
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Factorization of two-gluon 
propagation
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• For large number of colors, the medium average can be 
explicitly performed and the point of the transition singled 
out

• The time scale for such a transition is given by the 
formation time



Consequences of short 
formation times

• Splitting process is semi-local

• Propagation of two-gluon system factorizes 
into independent propagation

• Overlapping emissions are suppressed by 
factors of 

• Interferences are a subleading effect
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Interferences
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Independent 
emissions are 

enhanced by the 
medium length 



Interferences II

• Interferences between emissions from 
different sources are important only if they 
occur sufficiently close to previous splitting

• For dynamical case, 

decoherence time = formation time
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Probabilistic picture

• Inclusive and exclusive n-gluon observables 
easily derived

• Resums powers of 

• Classical branching process
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Conclusion

• Two-gluon production factorizes in the 
limit of short formation times

• Interferences are unimportant for soft 
emissions

• Full medium-induced branching process can 
be set in a suitable way for MC 
implementation (generating functional)


