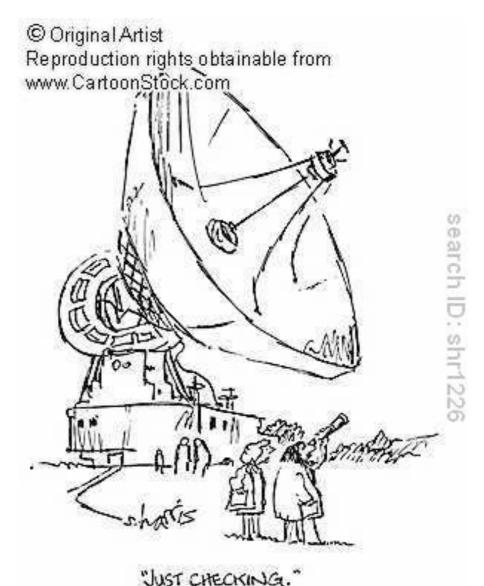
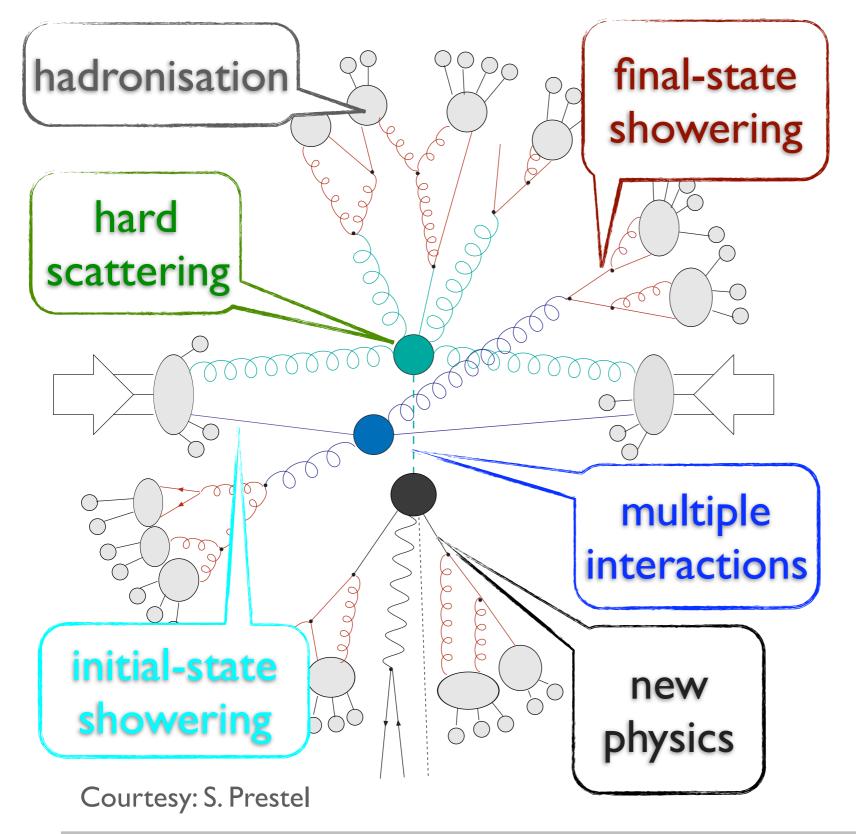


Monte-Carlos of jet quenching: an overview (II)

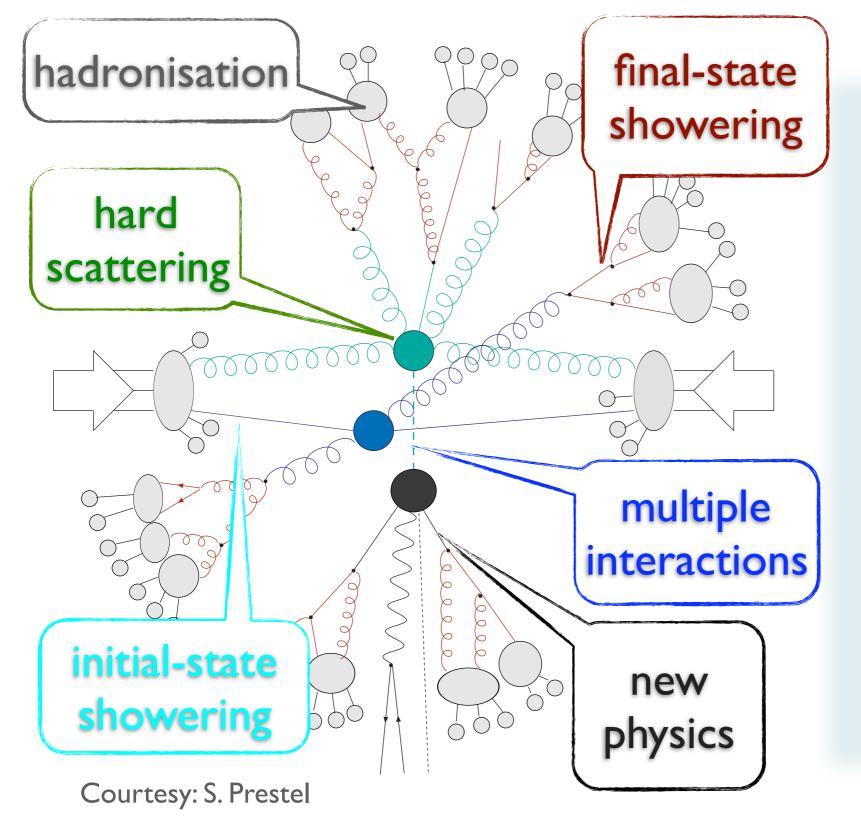

Konrad Tywoniuk

Jet Modification in the RHIC and LHC era (QM12 Satellite Workshop) 20-24 August 2012, Wayne State University

Outline


- classical vs. quantum
 - when is a probabilistic interpretation viable?
- key effects & concepts
- perspectives & challenges

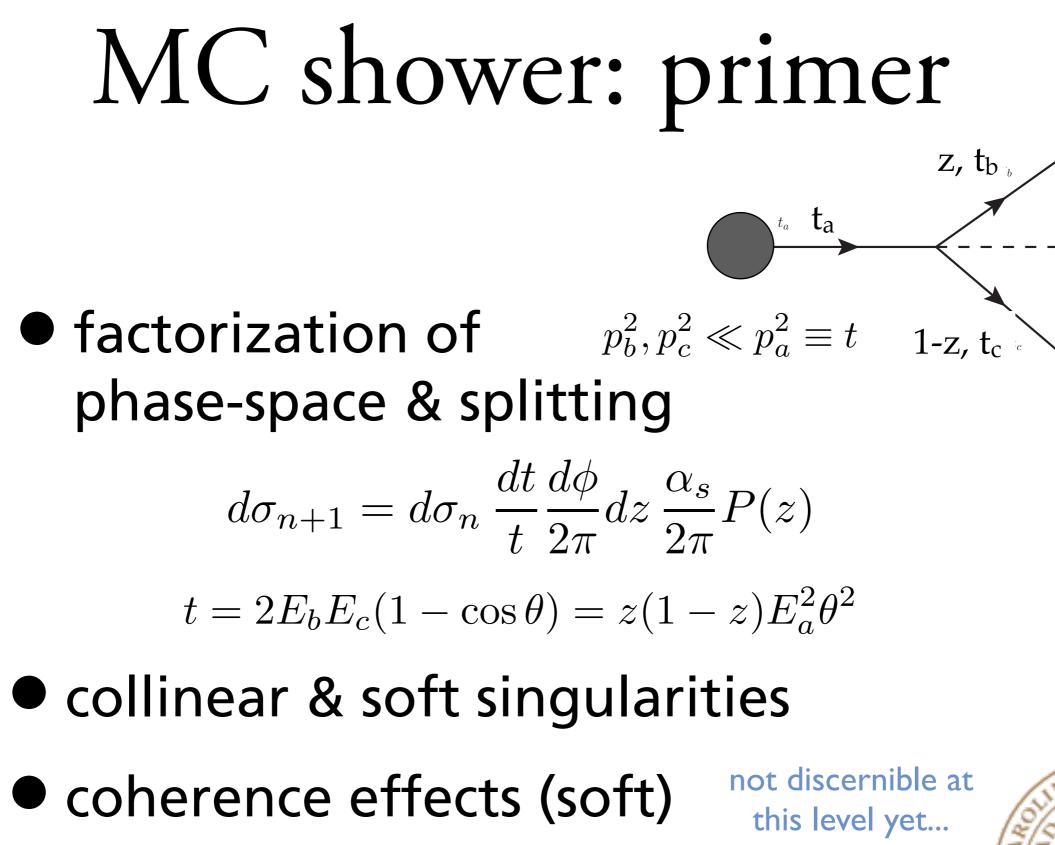
[disclaimer: devil is often in the details...]



typical pp event [à la PYTHIA, HERWIG, SHERPA]

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

typical pp event [à la PYTHIA, HERWIG, SHERPA]



Issues in HIC:

- factorization?
 - soft physics
 - back-reaction
- showering
 - final-state
 - inital-state
- hadronisation

3

• other...

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

DGLAP evolution

 $t_0 \gg t_1 \gg t_2 \gg \ldots \gg \Lambda_{\rm QCD}^2$

- strong ordering in virtuality
- strong ordering in formation time

$$t_f = \frac{2\omega}{k_\perp^2}$$

 allows for a probabilistic interpretation!

00000

0000000

5

DGLAP evolution

 $t_0 \gg t_1 \gg t_2 \gg \ldots \gg \Lambda_{\rm QCD}^2$

- strong ordering in virtuality
- strong ordering in formation time

$$t_f = \frac{2\omega}{k_\perp^2}$$

 allows for a probabilistic interpretation!

00000

0000000

5

DGLAP evolution

 $t_0 \gg t_1 \gg t_2 \gg \ldots \gg \Lambda_{\rm QCD}^2$

- strong ordering in virtuality
- strong ordering in formation time

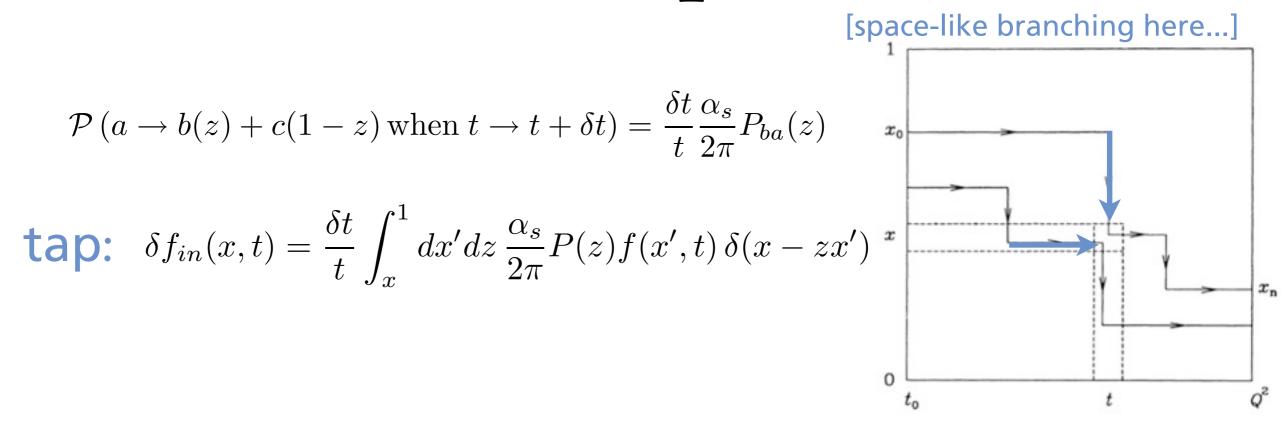
$$t_f = \frac{2\omega}{k_\perp^2}$$

 allows for a probabilistic interpretation!

Distribution of gluons with mom fraction x and virtuality Q^2

$$t\frac{\partial f_i(x,t)}{\partial t} = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P_{ij}(z) f_j\left(\frac{x}{z},t\right)$$

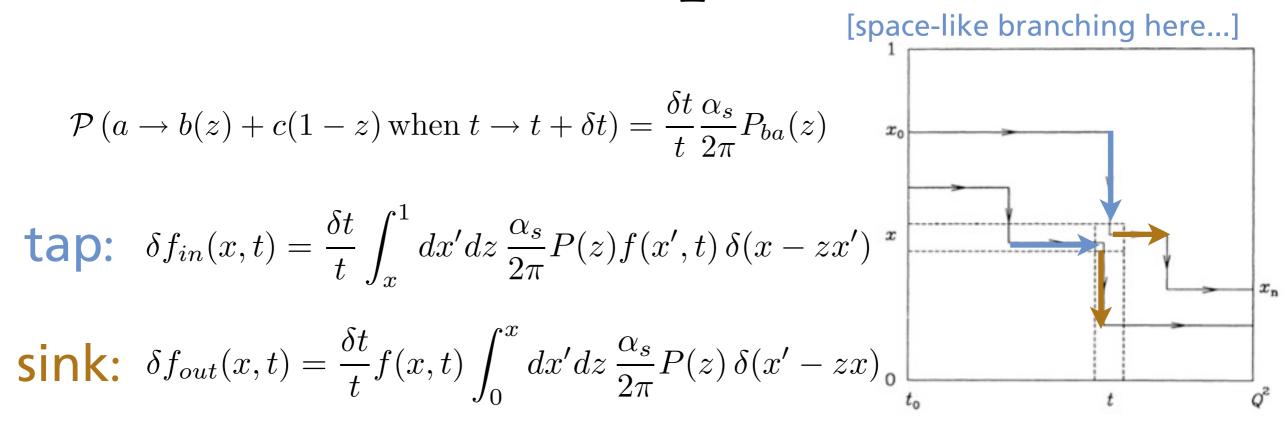
K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"


MULTINA CITA

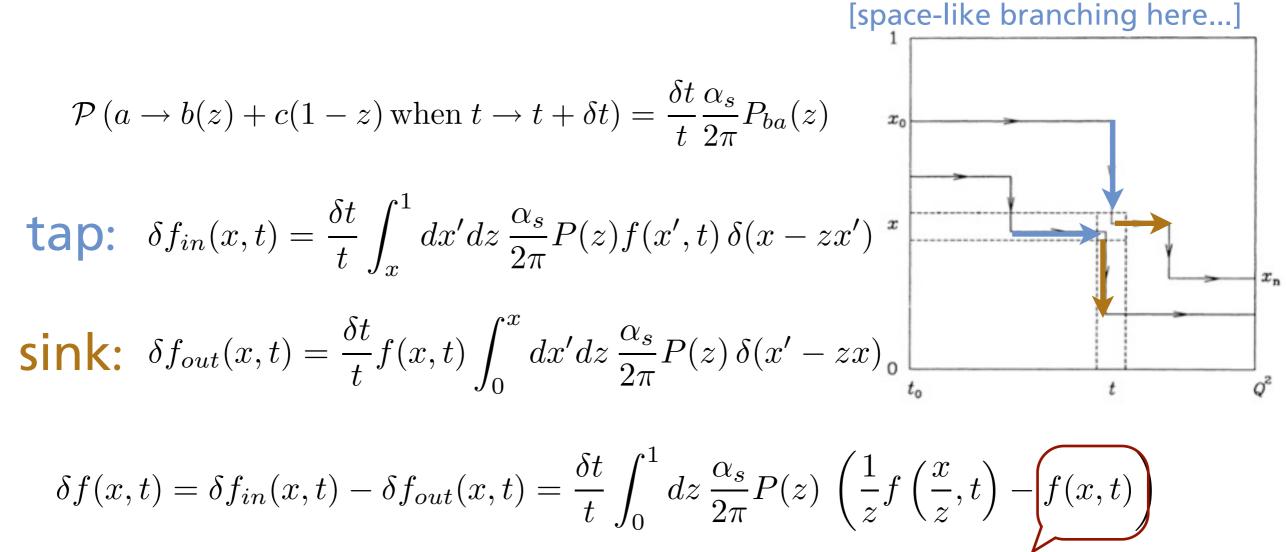
NON N

00000

0000000


Stochastic process

6


Stochastic process

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

THE REAL PROPERTY OF THE PROPE

Stochastic process

virtual terms

• evolution "time" = virtuality

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Sudakov form factor

$$\Delta(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{dt}{t} \int_{z_{\min}(t)}^{1-z_{\min}(t)} dz \frac{\alpha_s}{2\pi} P(z)\right] \quad \begin{array}{l} \text{probability of no emission} \\ \text{in [t_1, t_2] interval} \end{array}$$

7

Sudakov form factor

$$\Delta(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{dt}{t} \int_{z_{\min}(t)}^{1-z_{\min}(t)} dz \frac{\alpha_s}{2\pi} P(z)\right] \quad \begin{array}{l} \text{probability of no emission} \\ \text{in [t_1,t_2] interval} \end{array}$$

Integral equation:

$$f(x,t) = \Delta(t_0,t)f(x,t_0) + \int_{t_0}^t \frac{dt'}{t'} \Delta(t',t) \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z)f\left(\frac{x}{z},t'\right)$$

7

Sudakov form factor

$$\Delta(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{dt}{t} \int_{z_{\min}(t)}^{1-z_{\min}(t)} dz \frac{\alpha_s}{2\pi} P(z)\right] \quad \begin{array}{l} \text{probability of no emission} \\ \text{in [t_1,t_2] interval} \end{array}$$

Integral equation:

$$f(x,t) = \Delta(t_0,t)f(x,t_0) + \int_{t_0}^t \frac{dt'}{t'} \Delta(t',t) \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z)f\left(\frac{x}{z},t'\right)$$

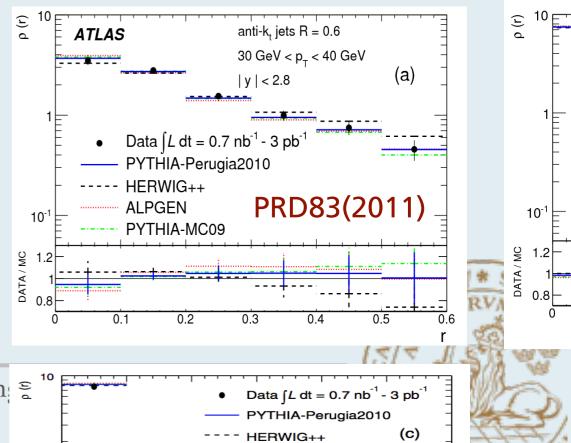
Veto algorithm:

dicing down a step in the ladder using two random numbers

$$\Delta(t, t') = \mathcal{R}_1$$

$$\int_{in(t')}^{t'} dz \, \frac{\alpha_s}{2\pi} P(z) = \mathcal{R}_2 \int_{z_{\min}(t')}^{1-z_{\min}(t')} dz \, \frac{\alpha_s}{2\pi} P(z)$$

1.C.

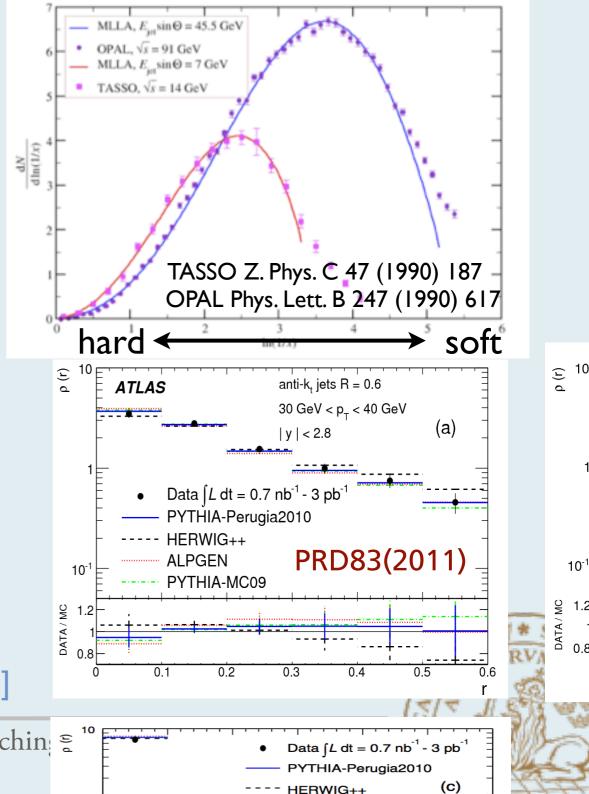

7

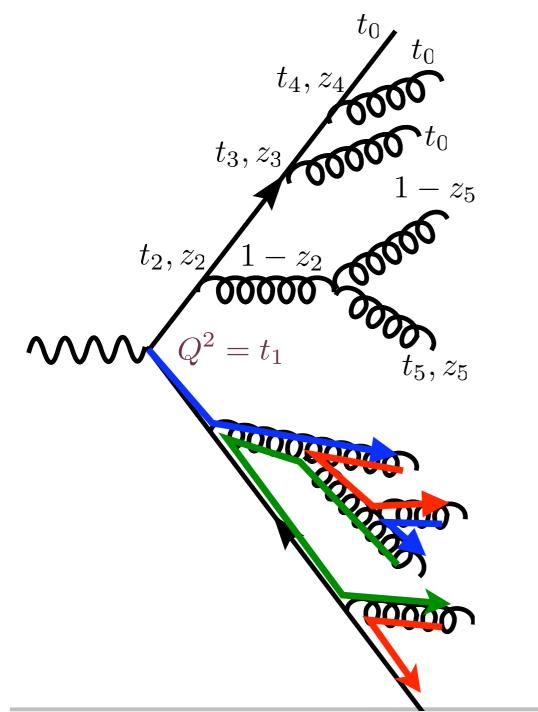
Coherence effects

- soft gluon radiation implicate large angles
- another type of evolution equation!
- in MC: accounted for in an "average" sense
 - angular ordering
 - good enough for inclusive & collinear observables
 - Inter-jet activity

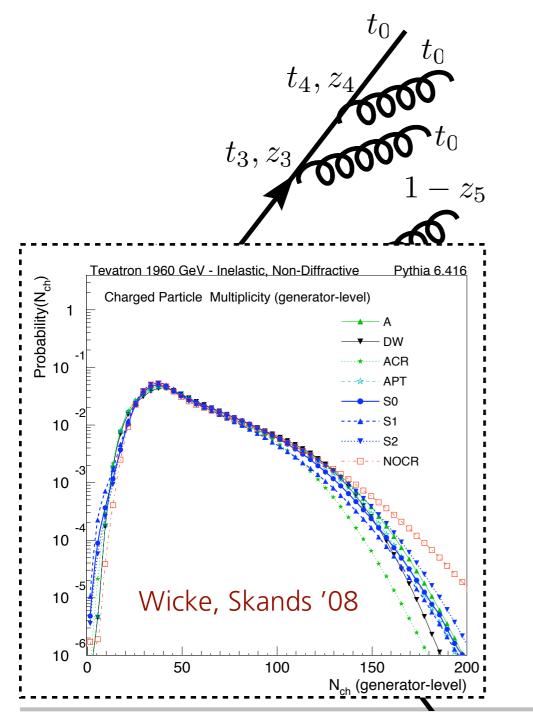
[see Yacine's talk, Mon]

K. Tywoniuk (Lund University) "MCs of jet quenchin 😤 "

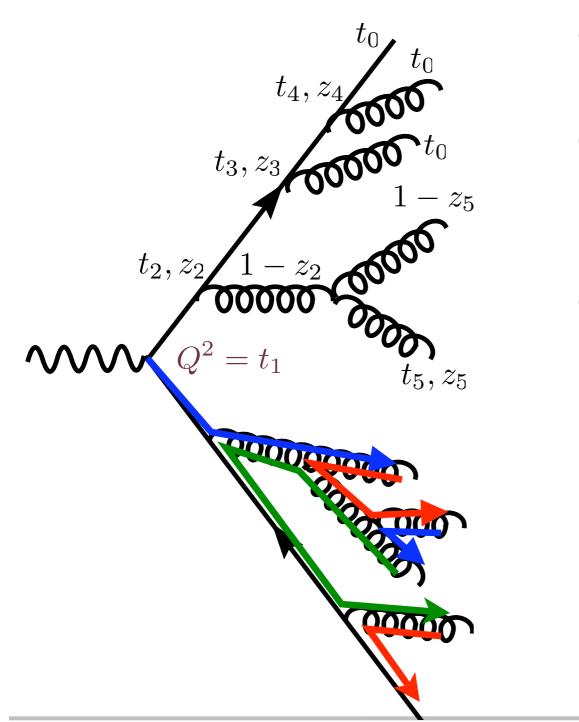



Coherence effects

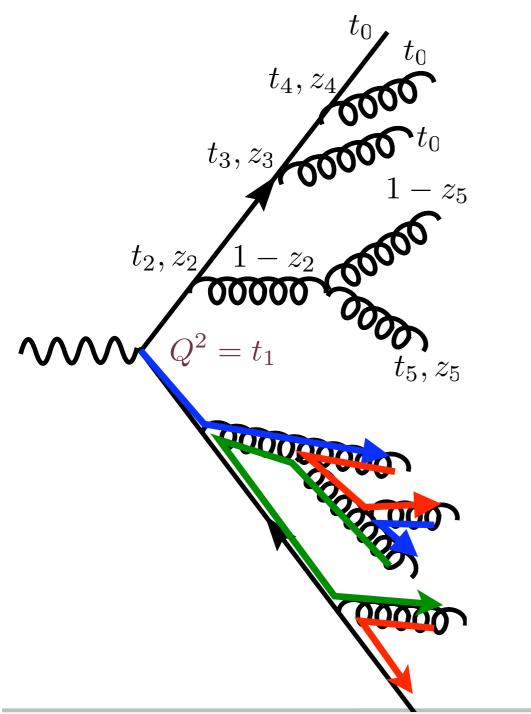
- soft gluon radiation implicate large angles
- another type of evolution equation!
- in MC: accounted for in an "average" sense
 - angular ordering
 - good enough for inclusive & collinear observables
 - Inter-jet activity



K. Tywoniuk (Lund University) "MCs of jet quenchin 🗧 "



- no reference to space-time
- large N_c-limit (planar)
 - only closest dipoles can radiate
- multi-jet and matching
- non-perturbative effects
 - color reconnections(!)
 - hadronization at Q₀
 - Lund string model
 - cluster hadronization


- no reference to space-time
- Iarge N_c-limit (planar)
 - only closest dipoles can radiate
 - Tevatron 1960 GeV Inelastic, Non-Diffractive Matching
 Multiplet factor, and we matching
 non-perturbative effects
 Solor reconnections(!)
 Noce dronization at Q0
 Lund String model
 cluster hadronization

N_{ch} (generator-level)

- probabilistic interpretation ensured!
- PYTHIA
 - virtuality (k₁) ordered
 (veto on angular ordering)
- HERWIG
 - angular ordered

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

- probabilistic interpretation ensured!
- PYTHIA
 - virtuality (k₁) ordered
 (veto on angular ordering)
- HERWIG
 - angular ordered

Issues in HIC:

- two types of radiation
- dispersion of momentum
- reference to space-time
- ..."(un)kown unkowns"

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

RVMQE RVMQE

Models: an overview

[not comprehensive..! well of transport formulations!]

	vacuum rad.	med-induced rad.	elastic eloss	remarks	
HIJING	~	~	(?)	full generator	
PYQUEN	~	~		rough BDMPS	
YaJEM	~	~	~	mod kinematics	
JEWEL1.0	~	~	~	mod splitting functions + kinematics	
JEWEL-LPM		~		'exact' induced radiation	
MARTINI	~	~	~	rate equations	
Q-PYTHIA	~	~		vacuum baseline	
Q-HERWIG	~	~		vacuum baseline	
	Wang, Gyulassy PRD 44 (1991) 3501, Comput.Phys.Commun. 83 (1994) 30 Lokhtin, Snigirev EPJC 45 (2006) 211, Renk, PRC 78 (2008) 034908, Ingelman, Rathsman, Stachel, Wiedemann, Zapp EPJC 60 (2009) 617, Stachel, Wiedemann, Zapp JHEP 1107 (2011) 118, Schenke, Gale, Jeon PRC 80 (2009) 054913 Armesto, Cunqueiro, Salgado EPJC 61 (2009) 775, Armesto, Corcella, Cunqueiro, Salgado JHEP 0911 (2009) 122				

Models: an overview

[not comprehensive..! well of transport formulations!]

y one Comput.		
PYQUEN ✓ YaJEM ✓ JEWEL1.0 ✓ JEWEL-LPM ✓ MARTINI ✓ Q-PYTHIA ✓ Q-HERWIG ✓ ✓ ✓ Wang Lokhtingen Stache	d elastic eloss	remarks
YaJEM ✓ ✓ JEWEL1.0 ✓ ✓ JEWEL-LPM ✓ ✓ MARTINI ✓ ✓ Q-PYTHIA ✓ ✓ Q-HERWIG ✓ ✓ Wang Lokhtingein Stache Vang Lokhtingein 	(?)	full generator
JEWEL1.0 JEWEL-LPM MARTINI Q-PYTHIA Q-HERWIG MARTINI M		rough BDMPS
JEWEL-LPM MARTINI MARTINI A A A A A A A A A A A A A A A A A A	~	mod kinematics
MARTINI I I I I I I I I I I I I I I I I I I	~	mod splitting functions + kinematics
Q-PYTHIA Q-HERWIG VONE COMPUT. Vang Lokhti Ingeln Stache		'exact' induced radiation
Q-HERWIG Wang Lokhti Ingeln Stache	~	rate equations
y one Comput. Wang Lokhti Ingeln Stache		vacuum baseline
y one Comput.		vacuum baseline
	n, Snigirev EP nan, Rathsman el, Wiedeman ke, Gale, Jeor	D 44 (1991) 3501, Comput.Phys.Comm JC 45 (2006) 211, Renk, PRC 78 (2008 n, Stachel, Wiedemann, Zapp EPJC 60 n, Zapp JHEP 1107 (2011) 118, n PRC 80 (2009) 054913 o, Salgado EPJC 61 (2009) 775,

307

Standard features

Radiative processes

- 2→3 induced radiation (Gunion-Bertsch)
- medium-modified splitting functions
- absorptive reactions

Elastic processes

- transverse momentum broadening
- energy transfer, drag effects
- randomization of color
- back-reaction

Standard features

Radiative processes

- 2→3 induced radiation (Gunion-Bertsch)
- medium-modified splitting functions
- absorptive reactions

Elastic processes

- transverse momentum broadening
- energy transfer, drag effects
- randomization of color
- back-reaction

What are the typical timescales?

quantum \Leftrightarrow classical **I**DOd

[Boltzman eq., ...]

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

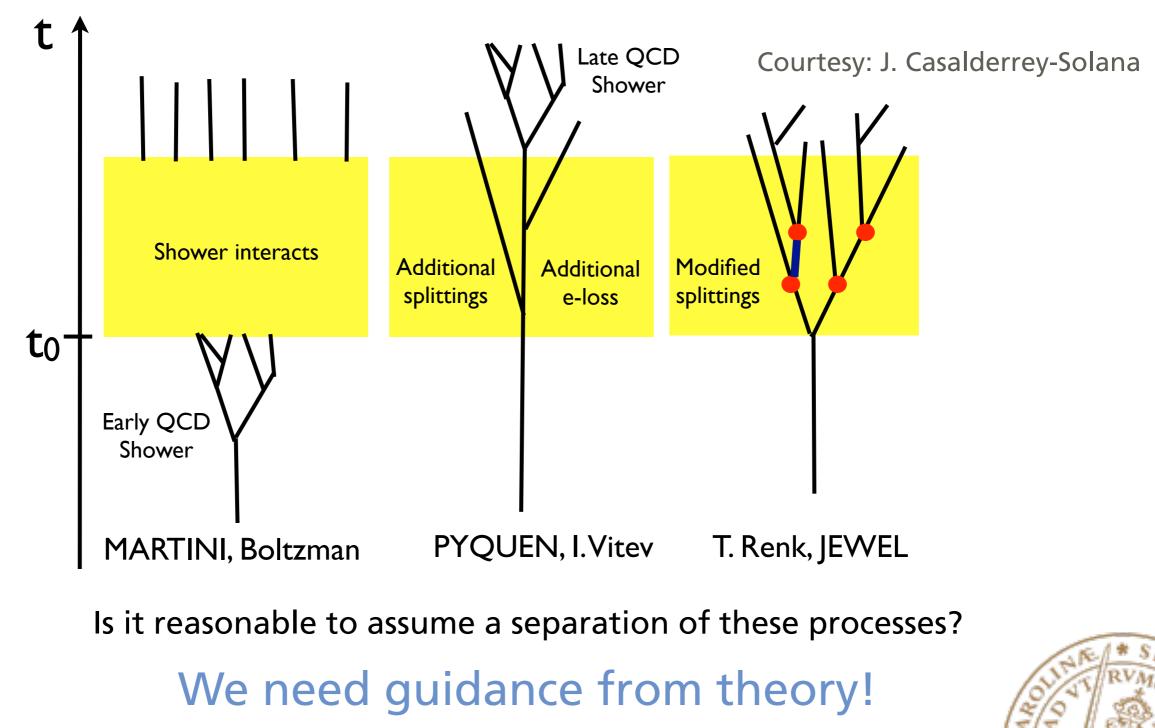
Standard features

Radiative processes

- 2→3 induced radiation (Gunion-Bertsch)
- medium-modified splitting functions
- absorptive reactions

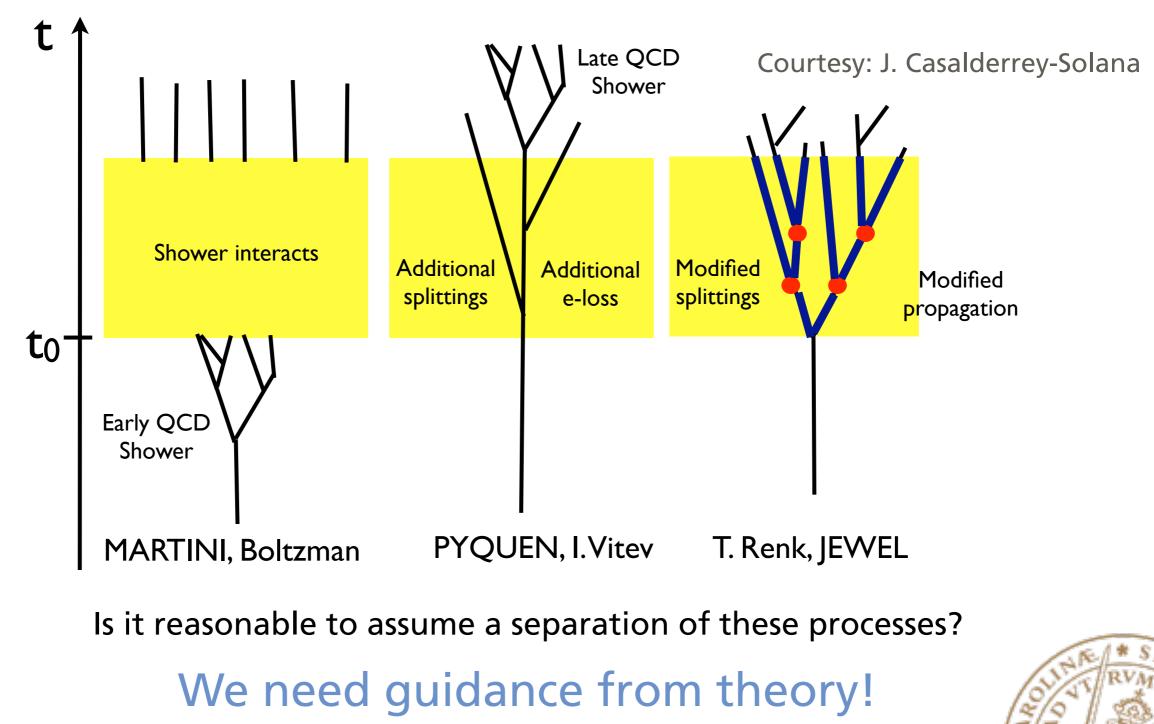
Elastic processes

- transverse momentum broadening
- energy transfer, drag effects
- randomization of color
- back-reaction


What are the typical timescales?

quantum \Leftrightarrow classical DOQ

[Boltzman eq., ...]


K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Differences in evolution

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Differences in evolution

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

YaJEM

[lifetime of parton i+1] $\langle \tau_{i+1} \rangle = \frac{E_{i+1}}{Q_{i+1}^2} - \frac{E_{i+1}}{Q_i^2}$

[emergence of parton i+1] i $\tau_{i+1}^0 = \sum_{j=1}^i \tau_j^0$

[smearing of lifetime]

$$P(\tau_i) = \exp\left(-\tau_i / \langle \tau_i \rangle\right)$$

Renk, PRC 78 (2008) 034908

- modifies PYSHOW
 - implements space-time via formation time estimate
- in between splittings
 - "drag"
 - "broadening"
- if Q²«∆Q²: t_f is found iteratively

YaJEM

[lifetime of parton i+1] $\langle \tau_{i+1} \rangle = \frac{E_{i+1}}{Q_{i+1}^2} - \frac{E_{i+1}}{Q_i^2}$

[emergence of parton i+1] i $\tau_{i+1}^0 = \sum_{j=1}^i \tau_j^0$

[smearing of lifetime]

$$P(\tau_i) = \exp\left(-\tau_i / \langle \tau_i \rangle\right)$$

$$\Delta Q_i^2 = \int_{\tau_i^0}^{\tau_i^0 + \tau_i} d\xi \ \hat{q}(\xi)$$
$$\Delta E_i = \int_{\tau_i^0}^{\tau_i^0 + \tau_i} d\xi \ D\rho(\xi)$$

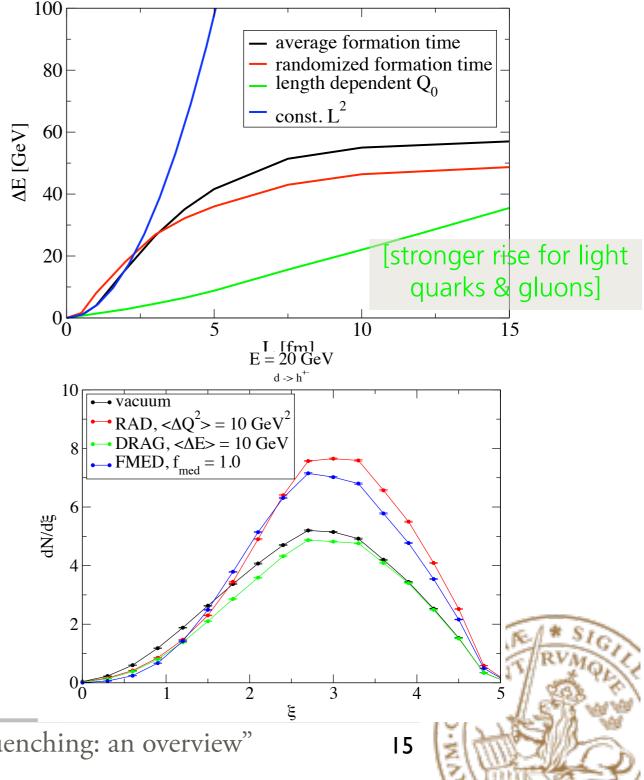
Renk, PRC 78 (2008) 034908

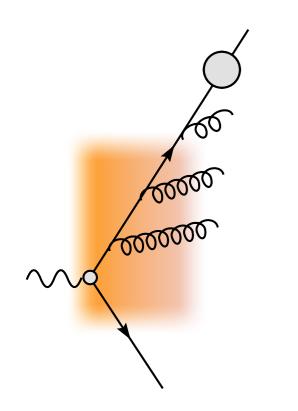
- modifies PYSHOW
 - implements space-time via formation time estimate
- in between splittings
 - "drag"
 - "broadening"
- if Q²«∆Q²: t_f is found iteratively

$$\hat{q}(\xi) = 2K \varepsilon(\xi)^{3/4} \left[\cosh \rho(\xi) - \sinh \rho(\xi) \cos \psi\right]$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

HUM-CARPORT


Path-dependence


many modes

- RAD: only radiative
- DRAG: only drag
- FMED: enhanced singularity in vacuum splitting function
- ASW: ?
- YaJEM-D: enhanced path-length dependence

[dynamical cut-off in medium]

$$Q_0 = \sqrt{\frac{E}{L}}$$

Q-PYTHIA

$$\frac{dN}{dzdk_{\perp}^2} = \frac{dN^{\text{med}}}{dzdk_{\perp}^2} + \frac{\alpha_s}{2\pi} \frac{P(z)}{k_{\perp}^2}$$

Armesto, Cunqueiro, Salgado EPJC 61 (2009) 775

Q-PYTHIA

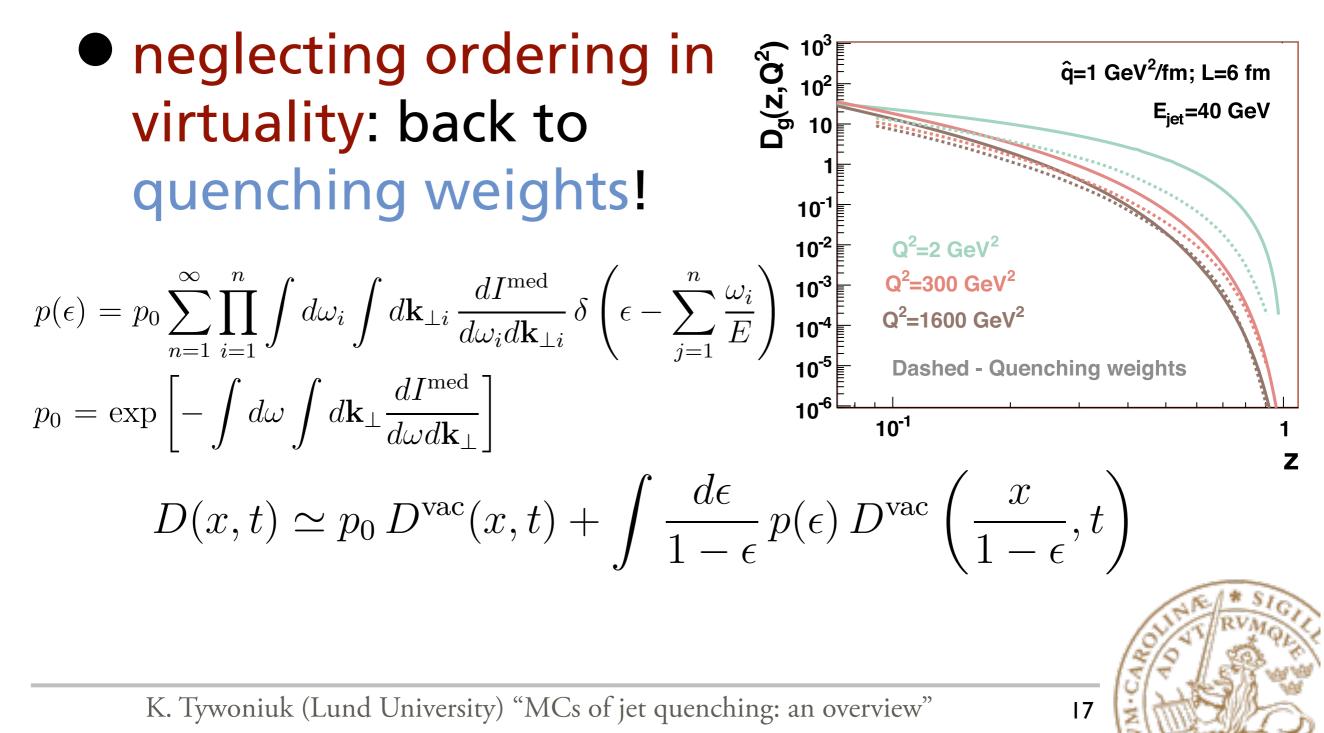
 $\frac{dN}{dzdk_{\perp}^2} = \frac{dN^{\rm med}}{dzdk_{\perp}^2} + \frac{\alpha_s}{2\pi}\frac{P(z)}{k_{\perp}^2}$

Armesto, Cunqueiro, Salgado EPJC 61 (2009) 775

16

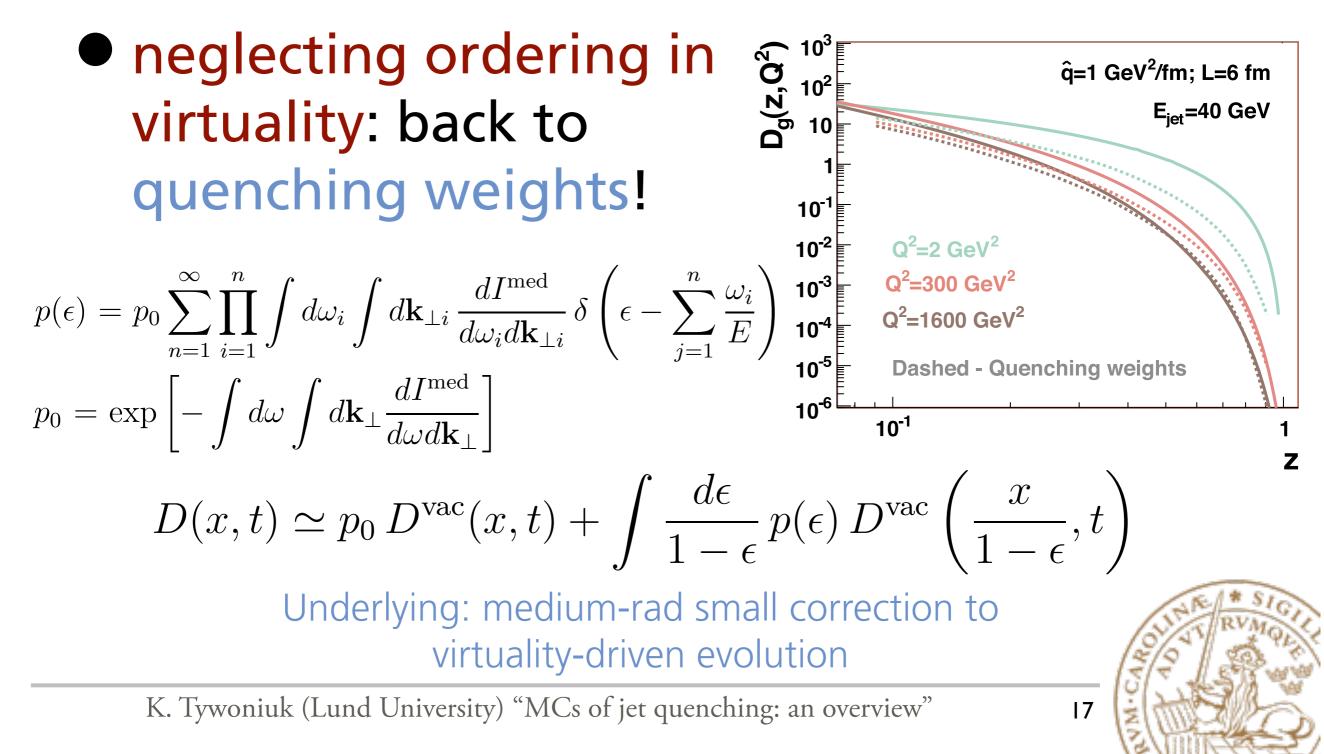
E=10 GeV

define a medium-modif splitting function

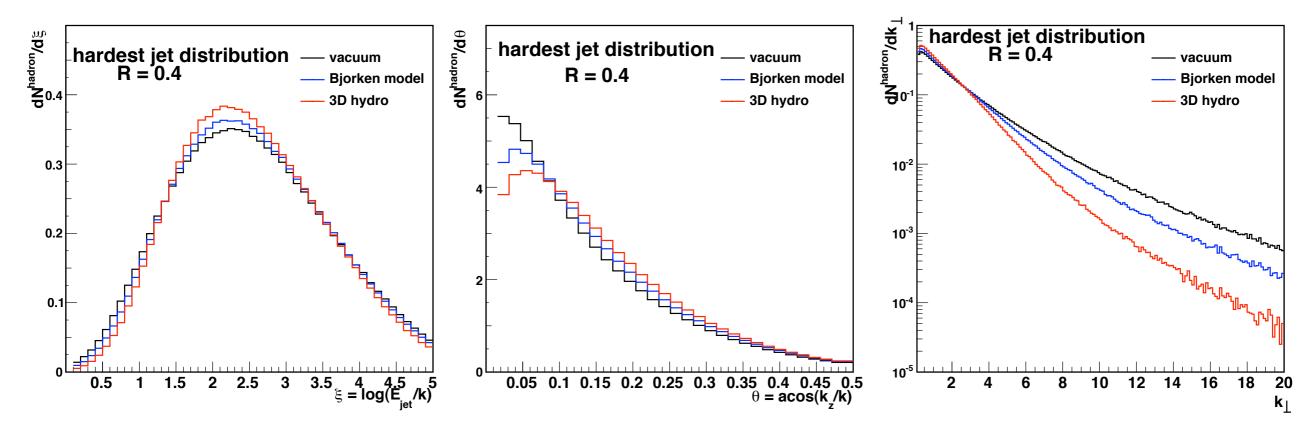

- showering á la DGLAP a implemented in PYTHIA
 - also as Q-HERWIG
- similar in spirit to HT

000000

A define a medium-modified
splitting function
showering á la DGLAP as
implemented in PYTHIA
• also as Q-HERWIG
similar in spirit to HT
$$\Delta(t_1, t_2) = \exp\left\{-\int_{t_1}^{t_2} \frac{dt}{t} \int_{z_{\min}(t)}^{1-z_{\min}(t)} dz \frac{\alpha_s}{2\pi} [P(z) + \Delta P(z)]\right\}$$

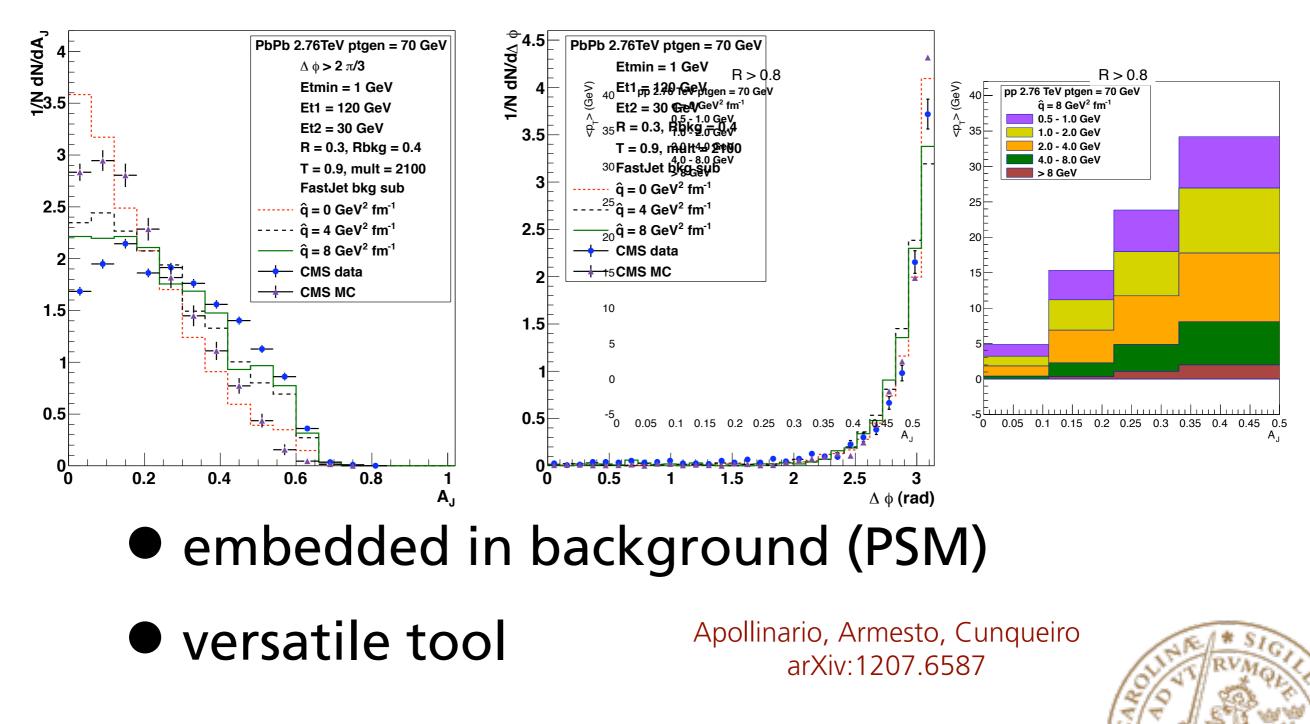

Some motivation

Armesto, Cunqueiro, Salgado, Xiang JHEP 0802 (2008) 048



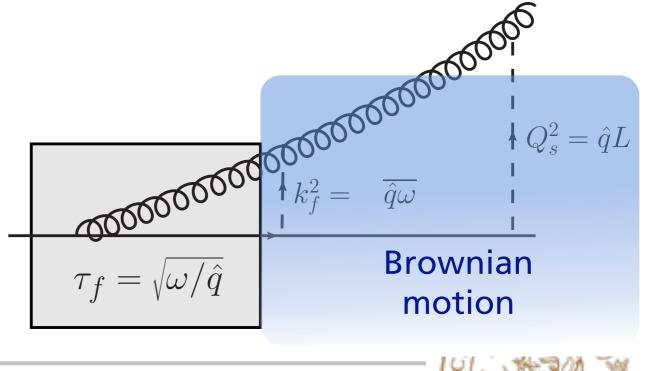
Some motivation

Armesto, Cunqueiro, Salgado, Xiang JHEP 0802 (2008) 048


Selected results

- inter-jet distributions
- effects of expanding medium on jet quenching

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"


Dijet asymmetry

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Stachel, Wiedemann, Zapp PRL 103 (2009) 152302, JHEP 1107 (2011) 118

- medium-induced radiation: longitudinal coherence
- probabilistic picture interpolating between known limits

20

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Stachel, Wiedemann, Zapp PRL 103 (2009) 152302, JHEP 1107 (2011) 118

20

- medium-induced radiation: longitudinal coherence
- probabilistic picture interpolating between known limits

$$\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = \frac{\alpha_s C_R}{\pi^2} \frac{|A(\mathbf{q})|^2}{(2\pi)^2} \frac{2 \mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} n_0 \int dt \left(1 - \cos \frac{(\mathbf{k} - \mathbf{q})^2}{2\omega} t\right) \mathbf{q} dt = \hat{\mathbf{q}} dt =$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Stachel, Wiedemann, Zapp PRL 103 (2009) 152302, JHEP 1107 (2011) 118

- medium-induced radiation: longitudinal coherence
- probabilistic picture interpolating between known limits

$$\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = \frac{\alpha_s C_R}{\pi^2} \frac{|A(\mathbf{q})|^2}{(2\pi)^2} \frac{2 \mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} n_0 \int dt \left(1 - \cos \frac{(\mathbf{k} - \mathbf{q})^2}{2\omega} t\right) \mathbf{q} dt = \int \frac{d^2 \mathbf{q}}{(2\pi)^2} |A(\mathbf{q})|^2 = \frac{\alpha_s C_A}{\pi} \int d^2 \mathbf{q} \frac{m_D^2}{(\mathbf{q}^2 + m_D^2)^2} \mathbf{q} dt = \int \frac{d^2 \mathbf{q}}{(\mathbf{q}^2 + m_D^2)^2} \mathbf{q} dt = \int \frac{d^2 \mathbf{q}$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Stachel, Wiedemann, Zapp PRL 103 (2009) 152302, JHEP 1107 (2011) 118

- medium-induced radiation: longitudinal coherence
- probabilistic picture interpolating between known limits

[formation time prior to rescattering]

$$t_f^{(1)} = \frac{2\omega}{(\boldsymbol{k} - \boldsymbol{q})^2}$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Coherent limit: $L \ll t_f^{(1)}$

 $\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$

21

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

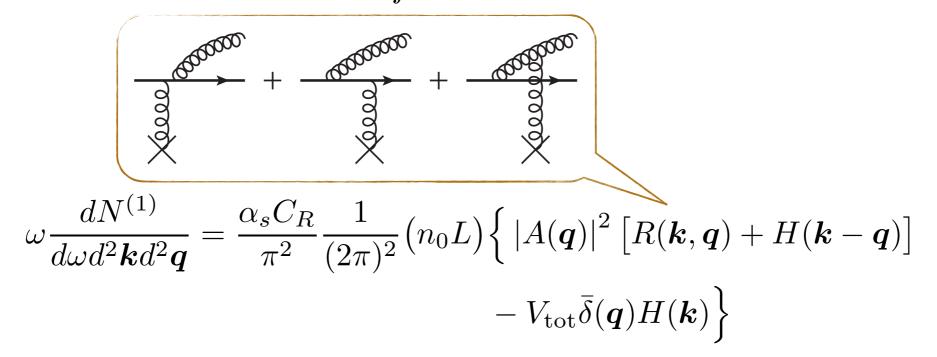
Coherent limit: $L \ll t_f^{(1)}$

$$\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$$

. . .

Incoherent limit: $L \gg t_f^{(1)}$

$$\omega \frac{dN^{(1)}}{d\omega d^2 \boldsymbol{k} d^2 \boldsymbol{q}} = \frac{\alpha_s C_R}{\pi^2} \frac{1}{(2\pi)^2} \left(n_0 L \right) \left\{ \left| A(\boldsymbol{q}) \right|^2 \left[R(\boldsymbol{k}, \boldsymbol{q}) + H(\boldsymbol{k} - \boldsymbol{q}) \right] - V_{\text{tot}} \bar{\delta}(\boldsymbol{q}) H(\boldsymbol{k}) \right\}$$

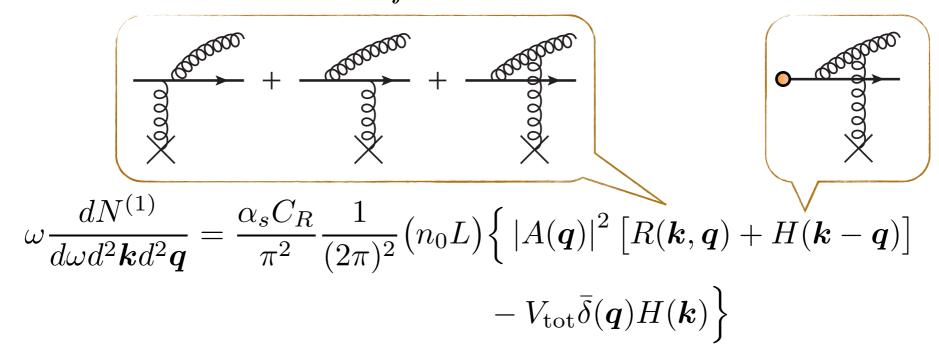

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

ALL STORES

Coherent limit: $L \ll t_f^{(1)}$

 $\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$

Incoherent limit: $L \gg t_f^{(1)}$

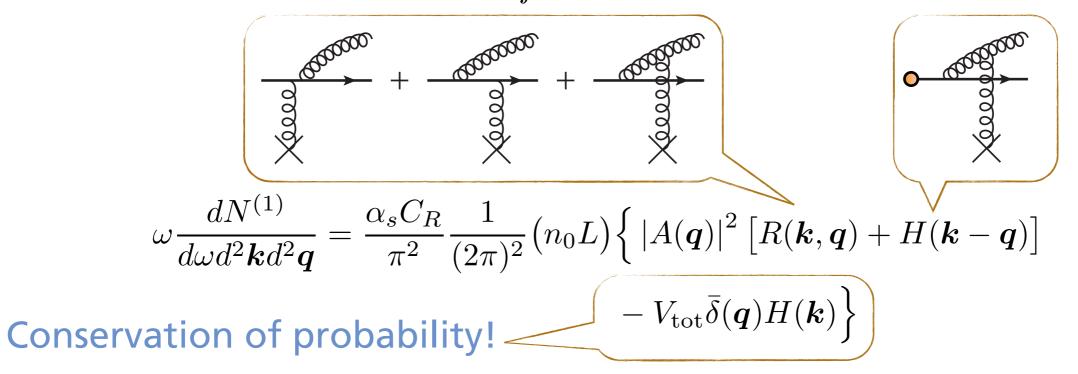

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

TO LO LA CLUM

Coherent limit: $L \ll t_f^{(1)}$

 $\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$

Incoherent limit: $L \gg t_f^{(1)}$

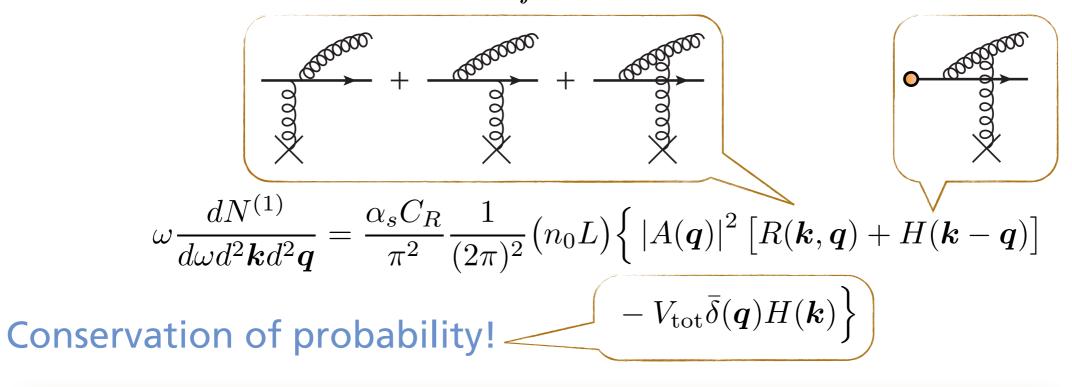


K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Coherent limit: $L \ll t_f^{(1)}$

 $\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$

Incoherent limit: $L \gg t_f^{(1)}$


K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

MULTING STORES

Coherent limit: $L \ll t_f^{(1)}$

 $\omega \frac{dN^{(1)}}{d\omega d^2 \mathbf{k} d^2 \mathbf{q}} = 0$

Incoherent limit: $L \gg t_f^{(1)}$

Resummed form factor: S

$$S_{\rm el} = \exp\left[-n_0 L V_{\rm tot}\right]$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

MC implementation

- neglecting final-state rescattering of vacuum radiation
 - equivalent to radiation off asymptotic charge
 - perfectly ok for ω dN/d ω
 - rescattering of induced radiation included in $R(k+\sum q_{rescat}, \sum q_{induced})$
- veto radiation that hasn't been formed inside the medium (qualitative guidance)
- dynamical determination of t_f
- numerical simplification: $R(m{k},m{q}) \sim \deltaig(m{k}-m{q}ig)$

Space-time propagation

- define mean path lengths for rescattering and radiation
- emitter scatters only inelastically, "emitee" scatters only elastically

$$\begin{split} \lambda_{\rm el} &\equiv \frac{1}{n_0 V_{\rm tot}} \qquad \lambda_{\rm inel} \equiv \frac{1}{n_0 \sigma_{\rm inel}} \\ \\ \text{BDMPS-Z limit:} \quad \lambda_{\rm el} \ll \lambda_{\rm inel} \end{split}$$

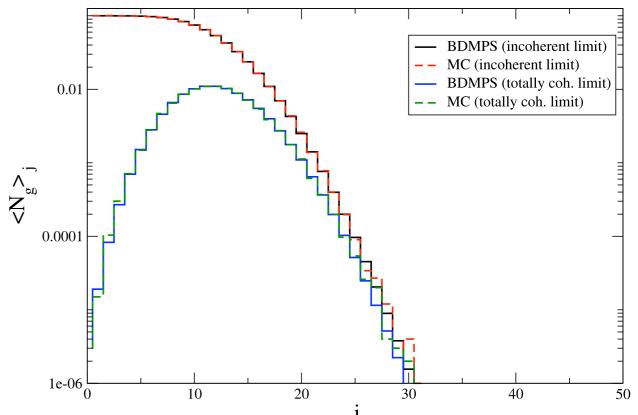
K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Space-time propagation

- define mean path lengths for rescattering and radiation
- emitter scatters only inelastically, "emitee" scatters only elastically

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Space-time propagation


- define mean path lengths for rescattering and radiation
- emitter scatters only inelastically, "emitee" scatters only elastically

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Subtleties due to coherence

- t_f establishes a "zone" for emission
 - t_f » L: elastic rescatterings can take place along the whole (not remaining) path
- re-weight by (N_s)⁻¹

 $\lambda_{\text{inel}} = 1.0 \text{ fm}, \quad \lambda_{\text{el}} = 0.1 \text{ fm}, \quad L = 1.3 \text{ fm}$

[Ns = number of scatterings during formation]

$$\langle N_g^{\rm incoh} \rangle (N_s) = N_s \langle N_g^{\rm coh} \rangle (N_s)$$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

MUNICIPAL STORES

algorithm NC

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

- algorithm \bigcirc
- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)

algorithn

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - O $\omega_{k_{\perp}}$ generated according to ω^{-1} and $|A(k_{\perp})|^2$ gives trial t_f

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - O $\omega_{k_{\perp}}$ generated according to ω^{-1} and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob 1-S^{el}_{no}(min(t_f,L_g)) at distance ΔL according to S^{el}_{no}(ΔL)/ λ_{el}

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$

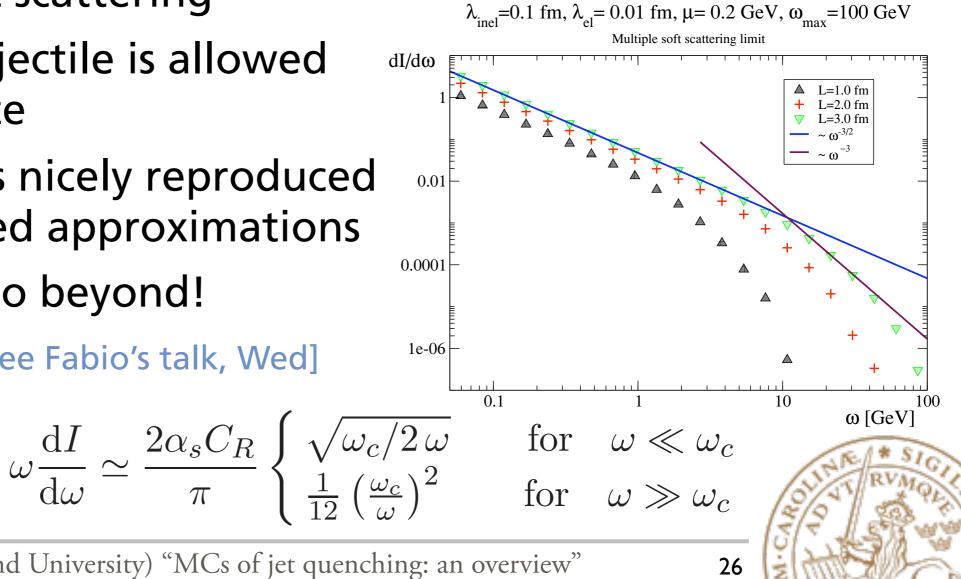
• update remaining path length L_g to L_g - ΔL

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$
 - update remaining path length L_g to L_g ΔL
 - update t_f to $t_f + \Delta L k_{\perp}^2/2\omega$

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$
 - update remaining path length L_g to L_g ΔL
 - update t_f to $t_f + \Delta L k_{\perp}^2/2\omega$
 - find momentum transfer according to $|A(q_{\perp})|^2$ and update k_{\perp}

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$
 - update remaining path length L_g to L_g ΔL
 - update t_f to $t_f + \Delta L k_{\perp}^2/2\omega$
 - find momentum transfer according to $|A(q_{\perp})|^2$ and update k_{\perp}
 - ... continue until no further re-scattering is found

- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$
 - update remaining path length L_g to L_g ΔL
 - update t_f to $t_f + \Delta L k_{\perp}^2/2\omega$
 - find momentum transfer according to $|A(q_{\perp})|^2$ and update k_{\perp}
 - ... continue until no further re-scattering is found
 - O accept gluon with prob N_s^{-1} and determine a random production point in a box with size t_f around ξ

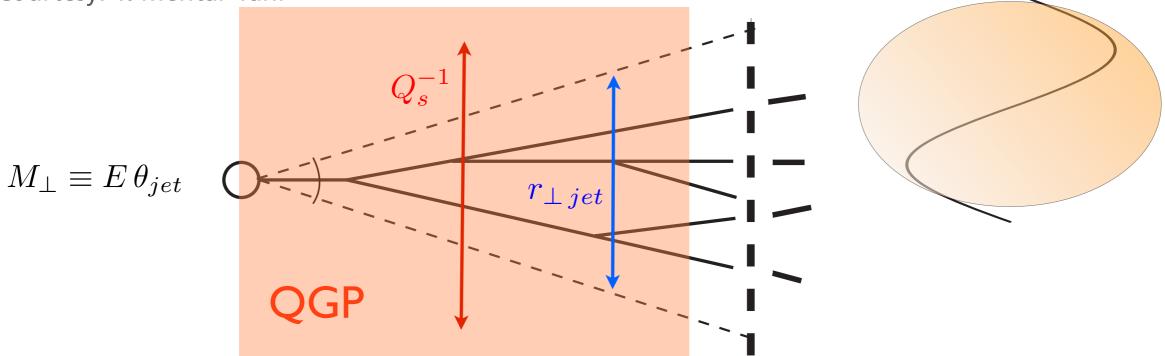


- determine position of (next) inelastic scattering: 1-S^{inel}no(L-ξ)
- trial gluon is produced (remaining trial path length is Lg=L!)
 - $O~\omega,k_{\perp}$ generated according to $\omega^{\text{-1}}$ and $|A(k_{\perp})|^2$ gives trial t_f
 - O coherent re-scattering with prob $1-S^{el}_{no}(min(t_f,L_g))$ at distance ΔL according to $S^{el}_{no}(\Delta L)/\lambda_{el}$
 - update remaining path length L_g to L_g ΔL
 - update t_f to $t_f + \Delta L k_{\perp}^2/2\omega$
 - find momentum transfer according to $|A(q_{\perp})|^2$ and update k_{\perp}
 - ... continue until no further re-scattering is found
 - O accept gluon with prob N_s^{-1} and determine a random production point in a box with size t_f around ξ
 - O propagate further to find remaining elastic scatterings

Limit: BDMPS-Z spectrum

- "BDMPS-Z scenario"
 - only soft scattering
 - only projectile is allowed to radiate
- spectrum is nicely reproduced with applied approximations
- allows to go beyond!

 $|A(\boldsymbol{q})|^2 \rightarrow |A(\boldsymbol{q})|^2 \Theta(2m_D - \boldsymbol{q})$


K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

[see Fabio's talk, Wed]

Vacuum-medium interface

L

Courtesy: Y. Mehtar-Tani

- bremsstrahlung is treated quite differently_in<to, \bar{e}^1 various < odes $\frac{1}{\sqrt{\hat{q}L^3}}$
- separation_of scales at LHC! $r_{\perp} > Q_s^-$

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Vacuum-medium interface

 $r_{\perp jet}$

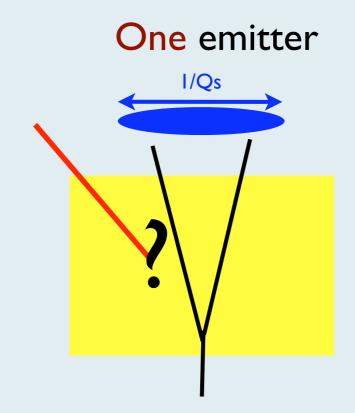
L

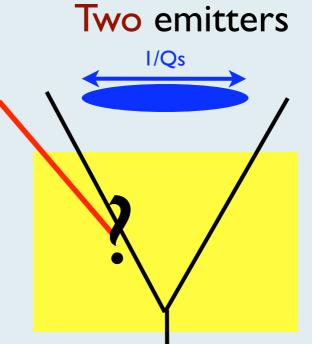
Qs⁻

Courtesy: Y. Mehtar-Tani

 $M_{\perp} \equiv E \,\theta_{jet}$

 bremsstrahlung is treated quite differently_in<to_elvarious<codes____

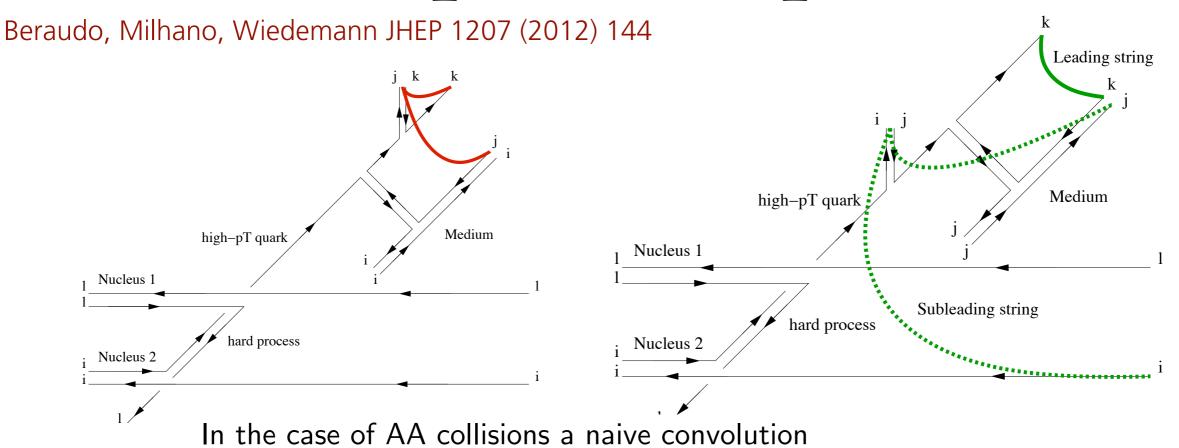

• separation_of scales at LHC! $r_{\perp} > Q_s^-$


 Q_s^{-1}

OGP

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

Guidance from the antenna


Courtesy: J. Casalderrey-Solana

- •Shower transverse size < 1/Qs \Rightarrow radiation as a single parton
- •Shower transverse size > $1/Qs \Rightarrow$ radiation as a independent partons

Genuine pQCD effect: color transparency [tunneling]

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

An important point...

Parton Energy loss \otimes Vacuum Fragmentation

without accounting for the modified color-flow would result into a too hard hadron spectrum: fitting the experimental amount of quenching would require an overestimate of the energy loss at the partonic level; Andrea Beraudo, Hard Probes 2012

K. Tywoniuk (Lund University) "MCs of jet quenching: an overview"

MC prospects

- versatile tools vs. detailed descriptions
- exact kinematics
 - conservation of energy-momentum
- track all particles
- implement 'advanced' space-time picture
 - evolution of energy-density, flow fields
- must be checked against well-controlled limits!
- extensions beyond theory
 - recoil/back-reaction: source terms

MC prospects

- versatile tools vs. detailed descriptions
- exact kinematics
 - conservation of energy-momentum
- track all particles –
- implement 'advanced' space-time picture
 - evolution of energy-density, flow fields
- must be checked against well-controlled limits!
- extensions beyond theory
 - recoil/back-reaction: source terms

30

E_{T1}

E_{T2}<E_{T1}

MC prospects

- versatile tools vs. detailed descriptions
- exact kinematics
 - conservation of energy-momentum
- track all particles –
- implement 'advanced' space-time picture
 - evolution of energy-density, flow fields
- must be checked against well-controlled limits!
- extensions beyond theory
 - recoil/back-reaction: source terms

the "truth" is out there...

30

E_{T1}

E_{T2}<E_{T1}

Outlook

- generic features: energy loss & softening
- how robust are the experimental signals to:
 - collisional (drag), radiative, collimation (broadening), NLO, non-perturbative (hadronization)......
 - how to get a handle?
- do we need to rethink approach to the problem?

