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e Relativistic corrections (scale, density, velocity)?
e Purely relativistic effects (backreaction, light propagation, ...)
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The gradient expansion for ACDM:

NV
S

> Builds up a series solution in numbers of gradients ((3)Rij) around
an initial seed metric k;; for the 3—metric 7,5,
ds? = —dt? + vijdg*dg’ . ij,...=1,2,3

» O)R;;=0,T'; +T'? with the Christoffel symbol I';=0;7,
contains single? and double spatial derivatives of the metric 7;;.
The latter are important for the density evolution.

— The series is basically in powers of double spatial gradients.

A relativistic approximation that can follow the
non-linear evolution for generic initial conditions

e

» The series holds for é@mij <L Oij [Comer et al., PRD D49 (1994) 2759]
(valid on scales beyond causal contact. However, for smooth enough
initial data it can be also extended into the non-linear regime).
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A formalism for the gradient expansion

The gradient expansion can be directly applied to the Einstein equations.
[Comer, Deruelle, Langlois, Parry (1994); Matarrese, Kolb, Riotto (2006), ...]

We choose a Hamilton Jacobi Theory,
constructed from the action of gravity.
[Salopek et al., PRD 49 (1994) 2872, and MNRAS 271 (1994) 1005, ]

next slides involve:
> summarise the set up for the Hamilton Jacobi equation (HJE)
> show how recursive/approximate solutions can be obtained

» from comoving coordinates to Newtonian coordinates

(we shall demand summation over repeated indices)
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Set up for the HJE

:L'+d:c

Sera

To obtain the HJE: .r — Nidt

1.) Start with the action of gravity with
a pressureless ACDM component: S.

2.) Use ADM formalism:

>

>

4.) The HJE is then: | 22 + H = 0.

Ndt

(143) split — N, N%, and metric splits into timelike and spacelike
components hy,, .

Choose the velocity potential of the fluid to define the time
hypersurfaces. — ds* = —dt® + ~,;;dg'dg’

Treat hy,,, N, and N* as conjugate variables of an action principle
— re-express the Lagrangian.

Conjugate momenta to N and N* vanish. Treat N and N* as
Lagrange multipliers and vary the action w.r.t. them.

— constrained Hamiltonian H.

ot
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Solutions to the HJE

The evolution equations are then: 8rG =1
oS 3 2 0§ 6S 1 V&1 -
y +/d [\[6%] p (%k%z 2%9%1) 5 (R 2/\)] =0, (1)
Ovi; 2 46S

o~ 7om (2vikvit — Vg vel) - (2)

To solve the above we impose: ‘ §=80 48 8@ 4 | ‘ with

S(o) :—Q/dgq\ﬁH(t),
s :/d%}ﬁJ(i)R
S® :/ d°q/7 [L1()R*+ Lo (t) RVR; |
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Solutions to the HJE

The evolution equations are then: 8rG =1
oS 3 2 0S8 6S 1 V&1 -
=+ / d*q [ s B (v = gvoma) = 5 (R 2A>] —0, (1)
07ij 2 0S
8t \/*5,_}% ( ’V k’yﬂ 7]’7“) ( )

To solve the above we impose: ‘ §=80 48 8@ 4 | ‘ with

> plug S into eq. (1). This gives:

SO —_9 /d3q\ﬁH(t), OH N 3H2 A 0

' ot 2
5(2):/(13qﬁj(t)R, %+JH—%:O, etc.
8(4) :/ dgqﬁ [L1(t)R2+L2 (t)H”R7J — leads to the time evolution factors H, J ...

B'ng

> put S into eq. (2): ~~
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The time evolution of the metric

e

Then we obtain:

i
ot

=2H~;; + J (Rvij — 4R;;) + L1 (3vi;R* — 8RR;; + 8R,;;)
+ Ly (16RxRY; + 4R,;; — 12RRi; — 40Ry;
+ 753 [OR — 5RF™ Ry + 4R2] ) ..

a semicolon denotes a covariant derivative with respect to Yij and X = X;m;m

Exact, but impossible to solve exactly, since it contains an infinite number of
terms, and Ri; = Rij ().

Instead, solve the equation recursively in terms of an initial seed metric &;;.
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The recursive procedure: at zero gradients

e

0vij
ot

= QH'Yzj +J (R’}/l] R”) + Ly (3’}/in2 — SRR” + SRJJ)
+ Ly (16Ri B + 4Ry; — 12RRy; — A0R;;

+ i [OR = SR Ry, + 4R?) ) +

Solve iteratively, at zero gradients:

07

ot

R

E.g., in case of Einstein-de Sitter: H = 2, and 7(0) a’(t)kij

— | This is the seperate universe approximation. ‘
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The recursive procedure: at second order in gradients

e

5%‘]‘
ot

= QH’W]‘ + J (R’}/U — 4R2J) + L1 (3’)’in2 — 8RR” + 8R7lj>
+ Ly (16Ri B + 4R; — 12RRy; — A0R;;

+ 7 [OR — 5R*™ Ry, + 4R?] ) +

Solve iteratively, at two gradients:

3%-(] )

ot
= |72 = A2(t)kyy + A1) (ﬁkij . 41%-)

Vij

—2H~ <2> T J(Rm) (0) 4R(0)) RO — ©)
1y T

Rij(y

Rij = Rij (kkl)

E.g., in case of Einstein-de Sitter: fyi(f) = a?(t)kij + 5503 ()t (]%kij — 4}?2»(,»)
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The recursive procedure: at fourth order in gradients

e

Ovij
ot

= 2H~;; + J (Rvij — 4Ri;) + Ly (3v;;R* — 8RR;; + 8R,;5)
+ Ly (16RikRkj +4R.; — 12RR;; — 40R;;
+ 35 [OR = 5B Ry + 4R%) )+

At four gradients:

oy .
th] =2H ()+J(Rkj—4Rij)
A Ag A A A A Ak
+ C1R%kij + CoR*™ Ry kij + C3RR;; + CuRip R
+ D1ORk;; + DaRyij + D3OR;
covariant derivatives | and [J are w.r.t. k;;

Eg: C1 =833 — 205 with L= 2L = —$L,.
= %_(;L) = see next slide
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The final metric up to four gradients (for simplicity: A = 0)

e

9 . ~ A 81
Yij ani_,‘ + %astg (Rk,, — 4Rij> + %a%g

. . 5 ~ 89 .
<—4kaka + DR+ 3—21%2) kij

. Ak 5 4 5 4
— 1ORRZ’]’ =+ 17R,,ij j— 5DR2‘J‘ =+ 8RZ~]~:| .

This is valid up to

1

tcon ~ O(l - 3)%73/2 .

Corresponds roughly to the collapse time of regions with curvature R.
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Performance? [Example: spherical collapse of a dust ball in a FRW universej

2 2 dT2 2 2 a 2 871'Gf0 K
dz —““)L_w“dﬁ Q) F s s
1 1
= a(u) = i(l—cosu) , |k|7T(u) = i(u—sinu) (87G =3, fo = r)
L5t
. 0th order

DS

L I
0s 10

Parametric plot taken from [Enqvist et al., JCAP 1203 (2012) 026]
Gradient expansion (for positive and negative curvature):

T\2%/3 9 T\2/3 81 1 T\4/3
8 T o R
a(7) (TO) \/:Flo””0 &) Taostoln) T
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The gradient metric for our universe, formally valid up to feon o 3.

—
Assuming standard inflationary conditions, the initial metric is
10
k'i,j — 62] 14+ gq)(t(h q) , ® is the primordial Newtonian potential

and the metric takes the form

Yij(t, @) = a°(t) | 8ij + 3a(t) tg @ i; + a*(t) t5 Cij(q) + Dij(t, q) + O(®%) |,

“, 1" denotes a differentiation with respect to g;

with
A 9
Cij = 23 (199 ;i@ 1 — 12D ;P 1 + 305 {P,uP,;mm — PCimPim }]
A~ 1
Dij = (Sij <§O(I> =+ ga(t)tgqal(l),l) — 150,(75)158‘13,2‘(1),]' — IOa(t)t?)(I)(IJ,ij .

This term is neglected in the current literature. It will affect the latter coordinate transformation.
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Overview: The (non)-perturbative use of ;;

— (numerical) treatment of

» backreaction, e.g. the evolution of the domain averaged scale

faCtOI’ [Matarrese, Kolb, Riotto (2006); [Enqvist, Hotchkiss, Rigopoulos (2012)]

agD(t) = fD dgqﬁ, 3% = —47TG<p>D+QD, v = det[vy]
1 T 2 1 i3 . 2 1 ; ;.

Qo = {(745)*) ) = § (rPs)p — § (7w )

» light propagation (geodesic equation),

> fnn?

» evolution of density inhomogeneities:
_ 7° .
5(t,q) = (1+60)y/ L — 1. Sy =, 8 = ke
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So what does that mean?

» The above coordinate transformation brings spacetime to an
almost FRW form.

» To leading order we obtain the Newtonian metric and the
Zel'dovich displacement field.

> (Note: due to the transformation we have lost the
non-perturbative power of the formalism.)



So what does that mean?
The above coordinate transformation brings spacetime to an
almost FRW form.

To leading order we obtain the Newtonian metric and the
Zel'dovich displacement field.

(Note: due to the transformation we have lost the
non-perturbative power of the formalism.)

Next steps to do:
Calculate the gradient metric up to third order, i.e., six spatial
gl’adients. [CR,Rigopoulos; in progress]

Then, repeat the coordinate transformation up to the very
order.
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