New ways of searching for

 the primordial gravitational wave from Large Scale StructureDonghui Jeong (Johns Hopkins University)

Theoretical methods for non-linear cosmology TH institute 6 September 2012

References

Large-Scale clustering of galaxies in general relativity DJ, Schmidt \& Hirata [arXiv: I I 07.5427]

Clustering Fossils from the Early Universe DJ \& Kamionkowski [arXiv: I 203.0302]

Cosmic Rulers
Schmidt \& DJ [arXiv: I 204.3625]
Large-Scale Structure with Gravitational Waves I: Galaxy Clustering
DJ \& Schmidt [arXiv:I205.| 5 I2]
Large-Scale Structure with Gravitational Waves II: Shear
Schmidt \& DJ [arXiv:I205.| 5 I4]

Introduction

Gravitational Wave IOI

Gravitational wave (GW)

- is a traceless transverse (tensor) component of the metric perturbations:
(Einstein convention + Greek $=0-4$, Latin $=1-3$)

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left\{\delta_{i j}+h_{i j}(\eta, \boldsymbol{x})\right\} d x^{i} d x^{j}\right]
$$

Traceless: $\quad \operatorname{Tr}\left[h_{i j}\right]=h_{i}^{i}=g^{i j} h_{i j}=0$
Transverse: $\quad \nabla_{i} h_{i j}=0$

- There are

6 (symmetric 3×3 spatial matrix) - 3 (transverse) - 1 (traceless)
$=2$ degrees of freedom $=h_{x}, h_{+}$

Primordial Gravitational Wave

- de-Sitter space generates stochastic gravitational waves with amplitude of $\left(m_{\mathrm{Pl}}=\sqrt{ } G_{N}\right)$

$$
\Delta_{h}^{2}(k)=\frac{k^{3} P_{T}(k)}{2 \pi^{2}}=\left.\frac{64 \pi}{m_{\mathrm{pl}}^{2}}\left(\frac{H}{2 \pi}\right)^{2}\right|_{k=a H}
$$

where power spectrum is defined as $\left(\mathrm{P}_{\mathrm{T}}=4 \mathrm{P}_{\mathrm{h}}\right)$

$$
\left\langle h_{i j}(\boldsymbol{k}) h^{i j}\left(\boldsymbol{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} P_{T}(k) \delta^{D}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

- Gravitational wave amplitude = energy scale of inflation!

Evolution of GW

- Evolution of GW($\mathrm{p}=+, \mathrm{x}$) are described by K-G equation sourced by anisotropic stress ($\mathscr{H}=\mathrm{a}^{\prime} / \mathrm{a}$ and ${ }^{\prime}=\mathrm{d} / \mathrm{d} \eta$):

$$
-h_{i j ; \nu}^{; \nu}=h_{p}^{\prime \prime}(\boldsymbol{k})+2 \mathcal{H} h_{p}^{\prime}(\boldsymbol{k})+k^{2} h_{p}(\boldsymbol{k})=16 \pi G a^{2} \Pi_{p}(\boldsymbol{k})
$$

Watanabe, Komatsu (2006)
Hubble damping term

- GW decays once the mode enters the horizon. As effect from Π_{p} is small,

$$
\begin{aligned}
& \mathrm{RD}: \quad h_{p}(\boldsymbol{k}, \eta)=j_{0}(k \eta) h_{p}^{\text {prim }} \\
& \mathrm{MD}: \quad h_{p}(\boldsymbol{k}, \eta)=\frac{3 j_{1}(k \eta)}{k \eta} h_{p}^{\text {prim }}
\end{aligned}
$$

GW from CMB polarization

GW from Large Scale Structure

- Two effects:
- At the location of galaxies (Source)
- Deflection of light from galaxies (Line of sight)
- Three possible ways of detecting GW from Large Scale Structure :
- Clustering of galaxies in large scale structure (S,L)
- Distortion on shape of galaxies, or cosmic shear (S,L)
- Fossil memory at the off-diagonal correlation (S)

Galaxy clustering with GR (as of March 2012)

- Gravitational waves are truly relativistic, so we need a fully relativistic description of galaxy clustering:
- Scalar perturbations: Yoo et al. 2009, Yoo 2010,Challinor\&Lewis20II,Bonvin\& Durrer20II,Jeong et al. 20II
- Tensor perturbations:
- Calculations were available (e.g. Yoo et al. 2009), but no quantitative analysis has been done.
- Our gut knows that the effect should be small, anyway.
- But, there was Masui \& Pen (2010). Will come back soon...

Shape distortion (lensing) with GR (as of March 2012)

- Do we have an equivalent formula for lensing?
- Yes, all the lensing literature are relativistic. But, with only scalar perturbations.
- To our best knowledge, other than scalars, there was only one PRL article [Dodelson, Rozo and Stebbins (2003)] with somewhat mysterious term of "metric shear"
- We need a covariant formula describing the shape distortion! Cosmic Rulers (section II of this talk)

Galaxy clustering: $\mathrm{P}_{\mathrm{g}}(\mathrm{k})$ in the universe only with GW

Donghui Jeong, Fabian Schmidt \& Christopher Hirata [arXiv: I I07.5427] Donghui Jeong \& Fabian Schmidt [arXiv:I205.15I2]

What did Masui \& Pen said?

- The super-horizon tensor perturbations during inflation can generate anisotropy in the small scale matter distribution (e.g. power spectrum) Masui\&Pen(2010)

$$
P\left(k_{a}\right)=\tilde{P}(k)-\frac{k_{i} k_{j} h^{i j}}{2 k} \frac{d \tilde{P}}{d k}+O\left(\frac{k_{h}}{k} h_{i j}\right)+O\left(h_{i j}^{2}\right)
$$

- We can measure GW from correlation of 21 cm fluctuation!
- This effect is order $<\delta \delta h>$. If it is observable, why not $<h h>$?
- Wait, can super-horizon modes do something ???
- This is without coupling.
(will come back to the direct coupling later!)

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Light deflection due to GW

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

GW effect I.Volume distortion

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

GW effect II. redshift perturbation

- Clustering measure: density contrast $\delta_{g}^{\mathrm{obs}}(\tilde{z}, \hat{n})=\frac{n(\tilde{z}, \hat{n})-\bar{n}(\tilde{z})}{\bar{n}(\tilde{z})}$
- But, the measured redshift is different from the true redshift!

$$
1+\tilde{z}=(1+\bar{z})(1+\delta z) \quad \delta z=\frac{1}{2} \int_{0}^{\tilde{\chi}} d \chi h_{\|}^{\prime}
$$

- That is, we under-(over-) estimate the mean number density for positive (negative) $\delta \mathbf{z}$ [when there are more galaxies at lower redshifts].

$$
\begin{gathered}
\quad \delta_{g}^{\text {obs }}(\tilde{z}, \hat{n})=\delta_{g}^{\text {intrinsic }}+b_{e} \delta z \\
\left.b_{e} \equiv \frac{d \ln \left(a^{3} \bar{n}_{g}\right)}{d \ln a}\right|_{\tilde{z}}=-\left.(1+\tilde{z}) \frac{d \ln \left(a^{3} \bar{n}_{g}\right)}{d z}\right|_{\tilde{z}}
\end{gathered}
$$

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

GW effect III. Magnification

- If galaxies are selected by apparent magnitude, the magnification

$$
\mathcal{M} \equiv \frac{D_{L}^{-2}}{\tilde{D}_{L}^{-2}(\tilde{z})}=\frac{D_{A}^{-2}}{\tilde{D}_{A}^{-2}(\tilde{z})}
$$

also changes the density contrast $\left(\mathrm{Q}=-\mathrm{d} \ln \tilde{n}_{g} / \mathrm{d} \ln \mathrm{F}_{\text {cut }}\right)$:

$$
\tilde{\delta}_{g}=\tilde{\delta}_{g}(\text { no } \mathrm{mag})+\frac{\partial \ln \tilde{n}}{\partial \ln \mathcal{M}}(\mathcal{M}-1) \equiv \tilde{\delta}_{g}(\text { no mag })+\mathcal{Q} \delta \mathcal{M}
$$

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Galaxy density contrast with GW

- If gravitational waves are the ONLY source of the distortion, the "observed" galaxy density contrast becomes

$$
\begin{aligned}
& \tilde{\delta}_{g T}=\left(b_{e}-2 \mathcal{Q}\right) \delta z-2(1-\mathcal{Q}) \hat{\kappa}-\frac{1-\mathcal{Q}}{2} h_{\|}-\frac{1+\tilde{z}}{2 H(\tilde{z})} h_{\|}^{\prime} \\
&-\frac{1-\mathcal{Q}}{\tilde{\chi}}\left[\int_{0}^{\tilde{\chi}} d \chi h_{\|}+\frac{1+\tilde{z}}{H(\tilde{z})} \int_{0}^{\tilde{\chi}} d \chi h_{\|}^{\prime}\right] \\
&-\frac{H(\tilde{z})}{2} \frac{\partial}{\partial \tilde{z}}\left[\frac{1+\tilde{z}}{H(\tilde{z})}\right] \int_{0}^{\tilde{\chi}} d \chi h_{\|}^{\prime} \cdot \\
& \hat{\kappa}=\frac{5}{4} h_{\| o}-\frac{1}{2} h_{\|}-\frac{1}{2} \int_{0}^{\tilde{\chi}} d \chi\left[h_{\|}^{\prime}+\frac{3}{\chi} h_{\|}\right]-\frac{1}{4} \nabla_{\Omega}^{2} \int_{0}^{\tilde{\chi}} d \chi \frac{\tilde{\chi}-\chi}{\chi \tilde{\chi}} h_{\|}
\end{aligned}
$$

Observer term

Angular power spectrum with GW

- For the sharp redshift slice at $\mathrm{z}=2$ with $\mathrm{b}_{\mathrm{e}}=2.5, Q=1.5$

When including all effects, $\mathbf{N O}$ super horizon k-modes affect the subhorizon clustering!!

We enjoyed physics, but too small!

- GW signal is way too small compared to the (I) intrinsic correlation and (2) the effect from scalar metric perturbations.

Cosmic Rulers

or, covariant formalism for the shape distortions
Fabian Schmidt \& Donghui Jeong [arXiv:I204.3625]

$$
d s^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}-2 B_{i} d \eta d x^{i}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Cosmology with a high-z yardstick

$$
\tilde{a}=(1+\tilde{z})^{-1}
$$

- Consider a shining yardstick at
$\Delta x^{\prime \mu}$ high redshift, whose proper length is somehow known : r_{0}
- We observe (RA,DEC,z) for both ends of the stick, infer the length of the stick from them : \tilde{r}
- Due to perturbations, $\tilde{r} \neq r_{0}$ such a distortion to the size is an important tool to study perturbations!

$$
d s^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}-2 B_{i} d \eta d x^{i}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Who measures ro?

We assume a small ruler.

We measure \widetilde{r} !

- We measure the angular and radial separations by using the unperturbed metric:

$$
\tilde{r}^{2}=\tilde{a}^{2} \delta_{i j}\left(\tilde{x}^{i}-\tilde{x}^{\prime i}\right)\left(\tilde{x}^{-} \tilde{x}^{\prime j}\right)
$$

$$
=\delta x^{i}-\hat{n}^{i} \delta x_{\|}
$$

$$
d s^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}-2 B_{i} d \eta d x^{i}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

$\Delta \mathrm{x}$ is from geodesic equations

$$
\Delta x_{\|}=\int_{0}^{\tilde{x}} d \chi\left[A-B_{\|}-\frac{1}{2} h_{\|}\right]-\frac{1+\tilde{z}}{H(\tilde{z})} \Delta \ln a
$$

Shift along the perpendicular direction

$$
\begin{aligned}
\Delta x_{\perp}^{i}= & {\left[\frac{1}{2} \mathcal{P}^{i j}\left(h_{j k}\right)_{o} \hat{n}^{k}+B_{\perp o}^{i}-v_{\perp o}^{i}\right] \tilde{\chi} } \\
& -\int_{0}^{\tilde{\chi}} d \chi\left[\frac{\tilde{\chi}}{\chi}\left(B_{\perp}^{i}+\mathcal{P}^{i j} h_{j k} \hat{n}^{k}\right)\right. \\
& \left.+(\tilde{\chi}-\chi) \partial_{\perp}^{i}\left(A-B_{\|}-\frac{1}{2} h_{\|}\right)\right]
\end{aligned}
$$

perturbation to the scale factor at emission $\Delta \ln a=A_{o}-A+v_{\|}-v_{\| o}-\int_{0}^{\tilde{\chi}} d \chi\left[A-B_{\|}-\frac{1}{2} h_{\|}\right]^{\prime}$

Now, consider a spherical ruler

Classification of distortion

- We decompose the distortion as Scalar,Vector and Tensor according to their rotational property on sphere:

$$
\frac{\tilde{r}-r_{0}}{\tilde{r}}=\mathcal{C} \frac{\left(\delta \tilde{x}_{\|}\right)^{2}}{\tilde{r}_{c}^{2}}+\mathcal{B}_{i} \frac{\delta \tilde{x}_{\|} \delta \tilde{x}_{\perp}^{i}}{\tilde{r}_{c}^{2}}+\mathcal{A}_{i j} \frac{\delta \tilde{x}_{\perp}^{i} \delta \tilde{x}_{\perp}^{j}}{\tilde{r}_{c}^{2}}
$$

\mathcal{M}

$$
d s^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}-2 B_{i} d \eta d x^{i}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Covariant formula for C, B, M

longitudinal scalar

$$
\begin{aligned}
\mathcal{C}= & -\Delta \ln a\left[1-H(\tilde{z}) \frac{\partial}{\partial \tilde{z}}\left(\frac{1+\tilde{z}}{H(\tilde{z})}\right)-\frac{\partial \ln r_{0}}{\partial \ln a}\right] \\
& -A-v_{\|}+B_{\|} \\
& +\frac{1+\tilde{z}}{H(\tilde{z})}\left(-\partial_{\|} A+\partial_{\|} v_{\|}+B_{\|}^{\prime}-v_{\|}^{\prime}+\frac{1}{2} h_{\|}^{\prime}\right)
\end{aligned}
$$

Vector

$$
\begin{aligned}
\mathcal{B}_{i} & =-\mathcal{P}_{i}{ }^{j} h_{j k} \hat{n}^{k}-v_{\perp i}-\partial_{\perp i} \Delta x_{\|}-\partial_{\tilde{\chi}} \Delta x_{\perp i}+\frac{\Delta x_{\perp i}}{\tilde{\chi}} \\
& =-v_{\perp i}+B_{\perp i}+\frac{1+\tilde{z}}{H(\tilde{z})} \partial_{\perp i} \Delta \ln a
\end{aligned}
$$

Magnification (e.g.Yoo et al. 2009, Challinor\&Lewis20II,Bonvin\& Durrer20II,Jeong et al. 201I)

$$
\mathcal{M} \equiv \mathcal{P}^{i j} \mathcal{A}_{i j}=-2 \Delta \ln a\left\lceil 1-\frac{\partial \ln r_{0}}{\partial \ln a}\right\rceil-\frac{1}{2}\left(h^{i}{ }_{i}-h_{\|}\right)+2 \hat{\kappa}-\frac{2}{\tilde{\chi}} \Delta x_{\|} .
$$

convergence

$$
\begin{aligned}
\hat{\kappa}=- & \frac{1}{2}\left[\frac{1}{2}\left(\left(h^{i}{ }_{i}\right)_{o}-3\left(h_{\|}\right)_{o}\right)-2\left(B_{\|}-v_{\|}\right)_{o}\right] \\
& +\frac{1}{2} \int_{0}^{\tilde{\chi}} d \chi\left[\partial_{\perp}^{k} B_{k}-\frac{2}{\chi} B_{\|}+\left(\partial_{\perp}^{l} h_{l k}\right) \hat{n}^{k}+\frac{1}{\chi}\left(h_{i}^{i}-3 h_{\|}\right)+(\tilde{\chi}-\chi) \frac{\chi}{\tilde{\chi}} \nabla_{\perp}^{2}\left\{A-B_{\|}-\frac{1}{2} h_{\|}\right\}\right]
\end{aligned}
$$

$$
d s^{2}=a^{2}(\eta)\left[-(1+2 A) d \eta^{2}-2 B_{i} d \eta d x^{i}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

- First fully relativistic, covariant expression for the cosmic shear!!

$$
\begin{aligned}
\pm 2 \gamma=-\frac{1}{2} h_{ \pm}-\frac{1}{2}\left(h_{ \pm}\right)_{o}-\int_{0}^{\tilde{\chi}} d \chi & {\left[\left(1-2 \frac{\chi}{\tilde{\chi}}\right)\left[m_{\mp}^{k} \partial_{ \pm} B_{k}+\left(\partial_{ \pm} h_{l k}\right) m_{\mp}^{l} \hat{n}^{k}\right]-\frac{1}{\tilde{\chi}} h_{ \pm}\right.} \\
& \left.+(\tilde{\chi}-\chi) \frac{\chi}{\tilde{\chi}}\left\{-m_{\mp}^{i} m_{\mp}^{j} \partial_{i} \partial_{j} A+\hat{n}^{k} m_{\mp}^{i} m_{\mp}^{j} \partial_{i} \partial_{j} B_{k}+\frac{1}{2} m_{\mp}^{i} m_{\mp}^{j}\left(\partial_{i} \partial_{j} h_{k l}\right) \hat{n}^{k} \hat{n}^{l}\right\}\right]
\end{aligned}
$$

Here, ${ }_{ \pm 2} \gamma(\hat{\boldsymbol{n}}) \equiv m_{\mp}^{i} m_{\mp}^{j} \mathcal{A}_{i j}$ is a spin ± 2 component of the shear, where $m_{ \pm}=\frac{1}{\sqrt{2}}\left(e_{1} \mp i e_{2}\right)$ are spin $\pm I$ vector field on sphere in the sense that it transforms $m_{ \pm} \rightarrow \boldsymbol{m}_{ \pm}^{\prime}=e^{ \pm i \psi} \boldsymbol{m}_{ \pm}$under the rotation $e_{i} \rightarrow \boldsymbol{e}_{i}^{\prime}$ with angle ψ.

- Conformal Newtonian gauge: ${ }_{ \pm 2} \gamma(\hat{\boldsymbol{n}})=\int_{0}^{\tilde{\chi}} d \chi(\tilde{\chi}-\chi) \frac{\chi}{\tilde{\chi}} m_{\mp}^{i} m_{\mp}^{j} \partial_{i} \partial_{j}(\Psi-\Phi)$

C, B, M, γ from scalar perturbations

- On small scales, C is dominated by line-of-sight velocity.When projecting onto sphere, velocity (solid line) and density (dotted line) have different slope
- Small scale B is dominated by perpendicular derivative of l.o.s. velocity.
- On small scales, $|M|=2|K|=2|\gamma|:$ $C_{1}{ }^{M}=4 C_{1}{ }^{Y}$

Large-Scale Structure with GW II
 : Shear

Fabian Schmidt \& Donghui Jeong [arXiv:l205.I5I4]

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Cosmic shear with GW

- With only tensor perturbation, shear expression becomes

$$
{ }_{ \pm 2} \gamma(\hat{\boldsymbol{n}})=-\frac{1}{2} h_{ \pm o}-\frac{1}{2} h_{ \pm}-\int_{0}^{\tilde{\chi}} d \chi\left\{\frac{\tilde{\chi}-\chi}{2} \frac{\chi}{\tilde{\chi}}\left(m_{\mp}^{i} m_{\mp}^{j} \partial_{i} \partial_{j} h_{k l}\right) \hat{n}^{k} \hat{n}^{l}+\left(1-2 \frac{\chi}{\tilde{\chi}}\right) \hat{n}^{l} m_{\mp}^{k} m_{\mp}^{i} \partial_{i} h_{k l}-\frac{1}{\tilde{\chi}} h_{ \pm}\right\}
$$

Metric Shear

- Dodelson, Rozo \& Stebbins (2003) "Assuming physical isotropy, we must add a 'metric shear' caused by the shearing of the coordinates with respect to physical space, i.e. $\Delta \gamma_{i \mathrm{i}}$, which is just the traceless transverse projection of $-h_{i j} / 2 "$

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

What "metric shear" really is

- The cosmic shear measurement are referenced to the frame within which galaxies are statistically round.
- The most natural choice of such coordinate is the local inertial frame defined along the time-like geodesic of the galactic center, or so called Fermi Normal Coordinate (FNC)!
- Coordinate transformation from FRW to FNC coordinate:

$$
x_{F}^{i}=x^{i}-\frac{1}{2} h_{i j} x^{j}-\frac{1}{2} \Gamma_{j k}^{i} x^{j} x^{k}+\mathcal{O}\left(x^{3}\right)
$$

FNC term
leads to an additional shear of

$$
\underset{\gamma_{\mathrm{ij}}}{\partial_{\perp(i} \Delta x_{\perp j)}} \rightarrow \underset{\gamma_{\mathrm{ij}}}{\partial_{\perp(i)} \Delta x_{\perp j)}}+\frac{1}{2} \mathcal{P}_{i}^{k} \mathcal{P}_{j}^{l} h_{k l}+
$$

Metric shear vs. I.o.s. integral

- They are about the same order of magnitude, but with opposite sign...

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

FNC metric and tide

- The metric in the Fermi Normal Coordinate is given by

$$
\begin{aligned}
g_{00}^{F}= & -1+\left(\dot{H}+H^{2}\right) r_{F}^{2}+\left[\frac{1}{2} \ddot{h}_{l m}+H \dot{h}_{l m}\right] x_{F}^{l} x_{F}^{m} . \\
g_{0 i}^{F}= & \frac{1}{3}\left(\nabla_{i} \dot{h}_{l m}-\nabla_{m} \dot{h}_{l i}\right) x_{F}^{l} x_{F}^{m} \\
g_{i j}^{F}= & \delta_{i j}+\frac{H^{2}}{3}\left[x_{F}^{i} x_{F}^{j}-r_{F}^{2} \delta_{i j}\right]+\frac{1}{6}\left(\nabla_{i} \nabla_{j} h_{m l}+\nabla_{l} \nabla_{m} h_{i j}-\nabla_{l} \nabla_{j} h_{i m}-\nabla_{i} \nabla_{m} h_{j l}\right) x_{F}^{l} x_{F}^{m} \\
& +\frac{H}{6}\left(\dot{h}_{l j} x_{F}^{l} x_{F}^{i}+\dot{h}_{i m} x_{F}^{m} x_{F}^{j}-\dot{h}_{i j} r_{F}^{2}-\dot{h}_{l m} x_{F}^{l} x_{F}^{m} \delta_{i j}\right) .
\end{aligned}
$$

- Equation of motion for non-relativistic body in FNC is determined by the effective gravitational potential $\Psi_{\text {eff }}=-\delta g_{00} / 2$.
- Ψ generates tidal force: $t_{i j}=\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \Psi^{F}=-\left(\frac{1}{2} \ddot{h}_{l m}+H \dot{h}_{l m}\right)$

$$
d s^{2}=a^{2}(\eta)\left[-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right]
$$

Intrinsic alignment (IA) model

- Intrinsic alignment: tidal fields (anisotropic gravitational potential) tends to align galaxies
- Linear alignment model $\gamma_{i j}^{I A}(\boldsymbol{n})=-\frac{C_{1}}{4 \pi G} \mathcal{P}_{i k} \mathcal{P}_{j l} t^{k l}=-\frac{2}{3} \frac{C_{1} \rho_{\mathrm{cr} 0}}{H_{0}^{2}} \mathcal{P}_{i k} \mathcal{P}_{j l} t^{k l}$
- consistent with observations on large (> $10[\mathrm{Mpc} / \mathrm{h}])$ scales Blazek+(20II), Joachimi+(20II)

$$
{ }_{ \pm 2} \gamma^{\mathrm{IA}}(\hat{\boldsymbol{n}})=\frac{1}{3} \frac{C_{1} \rho_{\mathrm{cr} 0}}{a^{2} H_{0}^{2}}\left(h_{ \pm}^{\prime \prime}+a H h_{ \pm}^{\prime}\right)
$$

Shear vs. intrinsic alignment

noise for a half sky survey with

- Intrinsic alignment dominates over the lensing signal, and IA signal increases at higher redshifts!

What about 2nd'ary B-modes?

- The second order scalar perturbations can also generate parity odd (B-mode) lensing signal
- Induced GW ~10-14 (Mollerach+2004;Bauman+2007)
- 2nd-order geodesic eqn. (Hirata\&Seljak 2003)
- reduced shear + lensing bias (Schneider+1997,Dodelson+2006, Schmidt+2009)

Clustering Fossils from the Early Universe

Donghui Jeong \& Marc Kamionkowski [arXiv:I 203.0302]

Two-point correlation functions

- Probability of finding two galaxies at separation r is given by the two-point correlation function:

$$
\begin{aligned}
P_{2}(\boldsymbol{r}) & =\bar{n}^{2}[1+\xi(\boldsymbol{r})] d V_{1} d V_{2} \\
\xi(\boldsymbol{r}) & \equiv\langle\delta(\boldsymbol{x}) \delta(\boldsymbol{x}+\boldsymbol{r})\rangle
\end{aligned}
$$

statistical homogeneity (translational invariance)

- Power spectrum is the Fourier transform of it:

$$
P(\boldsymbol{k})=\int d^{3} r \xi(\boldsymbol{r}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}}
$$

or in terms of density contrast,

$$
\left\langle\delta(\boldsymbol{k}) \delta\left(\boldsymbol{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} P(\boldsymbol{k}) \delta^{D}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right)
$$

Linear evolution of power spectrum

Non-Gaussianity and homogeneity

- IF we have a following non-linear coupling between primordial density fluctuations and new field h_{p} (JK coupling):

$$
\left\langle\delta_{i}\left(\boldsymbol{k}_{1}\right) \delta_{i}\left(\boldsymbol{k}_{2}\right) h_{p}(\boldsymbol{K})\right\rangle=(2 \pi)^{3}{\stackrel{\text { power spectrum of new field }}{P_{p}}(K) f_{p}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \epsilon_{i j}^{p} k_{1}^{i} k_{2}^{j} \delta^{D}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{K}\right)}_{\text {coupling amplitude }}^{\text {polarization basis (scalar, vector, tensor) }}
$$

- THEN, density power spectrum we observe now has nonzero off-diagonal components: Fossil equation

$$
\left.\left\langle\delta_{i}\left(\boldsymbol{k}_{1}\right) \delta_{i}\left(\boldsymbol{k}_{2}\right)\right\rangle\right|_{h_{p}(\boldsymbol{K})}=h_{p}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) f_{p}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \epsilon_{i j}^{p} k_{1}^{i} k_{2}^{j} \delta_{\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{K}}^{D}
$$

Why worrying about new fields?

- Inflaton(s) : a scalar field(s) responsible for inflation
- But, inflaton might not be alone. Many inflationary models need/ introduce additional fields. But, direct detection of such fields turns out to be very hard:
- Additional Scalar: not contributing to seed fluctuations
- Vector: decays as I/[scale factor]
- Tensor: decays after coming inside of comoving horizon
- Off-diagonal correlation (Fossil equation) opens new way of detecting them!

$\varepsilon^{P_{i j}}$: six independent modes

- In a symmetric 3×3 tensor, we have 6 degrees of freedom, which are further decomposed by Scalar,Vector and Tensor polarization modes.
- They are orthogonal: $\epsilon_{i j}^{p} \epsilon^{p^{\prime}, i j}=2 \delta_{p p^{\prime}}$
- Scalar $(\mathbf{p}=0, z): \quad \epsilon_{i j}^{0} \propto \delta_{i j} \quad \epsilon_{i j}^{z}(\boldsymbol{K}) \propto K_{i} K_{j}-K^{2} / 3$
- $\operatorname{Vector}(\mathbf{p}=x, y): \epsilon_{i j}^{x, y}(\boldsymbol{K}) \propto \frac{1}{2}\left(K_{i} e_{j}+K_{j} e_{i}\right)$ where $K_{i} e_{i}=0$
- Tensor ($\mathrm{p}=\mathrm{x},+$): transverse and traceless

$$
K_{i} \epsilon_{i j}^{+, \times}(\boldsymbol{K})=0 \quad \delta_{i j} \epsilon_{i j}^{+, \times}(\boldsymbol{K})=0
$$

$\xi(\mathbf{r})$ with single tensor mode $(p=+, x)$

$\xi(\mathbf{r})$ with single scalar mode $(p=0, z)$

$\xi(\mathbf{r})$ with single vector mode $\left(\mathrm{p}=x_{y},\right)$

Naive estimator

- Let's start from Fossil equation

$$
\left.\left\langle\delta\left(\boldsymbol{k}_{1}\right) \delta\left(\boldsymbol{k}_{2}\right)\right\rangle\right|_{h_{p}(\boldsymbol{K})}=h_{p}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) f_{p}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \epsilon_{i j}^{p} k_{1}^{i} k_{2}^{j} \delta_{\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{K}}^{D}
$$

- Rearranging it a bit, we get a naive estimator for the new field,

Optimal estimator for a single mode

- Inverse-variance weighting gives an optimal estimator for a single mode

$$
\widehat{h_{p}(\mathbf{K})}=P_{p}^{n}(\mathbf{K}) \sum_{\mathbf{k}} \frac{f_{p}^{*}(\mathbf{k}, \mathbf{K}-\mathbf{k}) \epsilon_{i j}^{p} k^{i}(K-k)^{j}}{2 V P^{\operatorname{tot}}(k) P^{\operatorname{tot}}(|\mathbf{K}-\mathbf{k}|)} \delta(\mathbf{k}) \delta(\mathbf{K}-\mathbf{k})
$$

- With a noise power spectrum ($\mathrm{P}_{\text {tot }}=\mathrm{P}_{\text {galaxy }}+\mathrm{P}_{\text {noise }}$)

$$
P_{p}^{n}(K)=\left[\sum_{\mathbf{k}} \frac{\left|f_{p}(\mathbf{k}, \mathbf{K}-\mathbf{k}) \epsilon_{i j}^{p} k^{i}(K-k)^{j}\right|^{2}}{2 V P^{\operatorname{tot}}(k) P^{\operatorname{tot}}(|\mathbf{K}-\mathbf{k}|)}\right]^{-1}
$$

Optimal estimator

for the power amplitude A_{h}

- For a stochastic background of new fields with power spectrum $P_{p}(K)=A_{h} P_{h}{ }^{f}(K)$, we optimally summed over different K-modes to estimate the amplitude by (w/ NULL hypothesis):

$$
\widehat{A_{h}}=\sigma_{h}^{2} \sum_{\boldsymbol{K}, p} \frac{\left[P_{h}^{f}(K)\right]^{2}}{2\left[P_{p}^{n}(K)\right]^{2}}\left(\frac{\left|\widehat{h_{p}(\boldsymbol{K})}\right|^{2}}{V}-P_{p}^{n}(K)\right)
$$

- Here, the minimum uncertainty of measuring amplitude is

$$
\sigma_{h}^{-2}=\sum_{\boldsymbol{K}, p}\left[P_{h}^{f}(K)\right]^{2} / 2\left[P_{p}^{n}(K)\right]^{2}
$$

When new "fields" are

usual metric fluctuations

- Then, new field only rescales the wave-vector $k^{2} \rightarrow k^{2}-h_{i j} k_{i} k_{j}$, which reads $f_{p}=-3 / 2 P(k) / k^{2}$ (Maldacena, 2003)

- projected 3-sigma (99\% C.L.) detection limit with galaxy survey parameters
- To detect the gravitational wave, we need a large dynamical range
- Current survey (e.g. SDSS) should set a limit on primordial V and T!

Conclusion

- We present three different ways of detecting primordial GW. For all three methods, effect at the source location is important as GW itself decays in time.
- Galaxy clustering: impossible to probe as the signal is too weak compared to that of scalar perturbations
- Cosmic shear: a bit challenge, but possible to detect GW on large scales thanks to the intrinsic alignment effect!
- Fossil equation: requires large dynamical range to beat the small signal (21 cm map?). Interesting potential to detect primordial vector fields as well.

