Primordial non-Gaussianity in the Large-Scale Structure:
 the galaxy power spectrum and beyond

Theoretical methods for nonlinear cosmology @ CERN - September 6th, 2012

Emiliano SEFUSATTI - ICTP

in collaboration with Xingang Chen, James Fergusson, Paul Shellard (ArXiv: 1204.6318)

+ Martin Crocce, Vincent Desjacques (ArXiv:1003.0007, ArXiv: 1111.6966)
+ Dani Figueroa, Toni Riotto \& Filippo Vernizzi (ArXiv: 1205.2015)

The power spectrum, first

Galaxy bias and the galaxy power spectrum

Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent correction for NG initial conditions of the local type

$$
\begin{gathered}
P_{g}(k)=\left[b_{1}+\Delta b_{1}\left(f_{N L}, k\right)\right]^{2} P(k) \\
\underset{\text { "Gaussian" }}{\downarrow} \quad \begin{array}{l}
\text { Scale-dependent correction } \\
\text { bias }
\end{array} \\
\text { due to local non-Gaussianity }
\end{gathered}
$$

Measurements of the power spectrum of dark matter halos in N -body simulation with local NG initial conditions

$$
\Delta b_{1, N G}\left(f_{N L}, k\right) \sim \frac{f_{N L}}{D(z) k^{2}}
$$

Galaxy bias and the galaxy power spectrum

Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent correction for NG initial conditions of the local type

$$
\begin{aligned}
& P_{g}(k)=\left[b_{1}+\Delta b_{1}\left(f_{N L}, k\right)\right]^{2} P(k) \\
& \text { "Gaussian" Scale-dependent correction } \\
& \text { bias due to local non-Gaussianity } \\
& \Delta b_{1, N G}\left(f_{N L}, k\right)=\frac{2 f_{N L}\left(b_{1}-1\right) \delta_{c}}{M(k)} \\
& M(k)=\frac{2}{3} \frac{D(z) T(k)}{\Omega_{m} H_{0}^{2}} k^{2}
\end{aligned}
$$

Galaxy bias and the galaxy power spectrum

The bias of galaxies receives a correction for NG initial conditions of any type

$$
P_{g}(k)=\underset{\substack{\text { "Gaussian" } \\ \text { bias }}}{\left[b_{1}+\Delta b_{1}\left(f_{N L}, k\right)\right]^{2}} P \underset{\sim}{\downarrow} \quad \text { correction }
$$

$$
\begin{aligned}
& \Delta b_{1, N G}\left(f_{N L}, k\right)=\frac{\left(b_{1}-1\right) \delta_{c}}{2 M(k)} I(k, m)+\frac{1}{M(k, z)} \frac{\partial I(k, m)}{\partial \ln \sigma_{m}^{2}} \\
& M(k)=\frac{2}{3} \frac{D(z) T(k)}{\Omega_{m} H_{0}^{2}} k^{2} \\
& I(k, m) \sim \int d^{3} q[\ldots] B_{\Phi}(k, q,|\vec{k}-\vec{q}|) \rightarrow \text { Initial bispectrum }
\end{aligned}
$$

What about other models?

The scale-dependence of bias can be different for other models, or not be there at all ...

The interesting case of Quasi-Single Field Inflation

QSF inflation predicts a family of models parametrized by

$$
\nu \equiv \sqrt{\frac{9}{4}-\frac{m^{2}}{H^{2}}} \longrightarrow
$$

with intermediate "shapes" between the m is the mass of the "isocurvaton" fields, i.e. field orthogonal to the inflaton trajectory in field-space
 equilateral and local

The interesting case of Quasi-Single Field Inflation

The scale-dependent bias correction

The interesting case of Quasi-Single Field Inflation

Given a positive detection of $f_{N L}$, how well can we constrain the parameter v, in future galaxy surveys?

Fisher matrix analysis of galaxy power spectrum measurements at $\mathrm{k}<\mathrm{k}_{\max }(\mathrm{z})$ $\mathrm{k}_{\max }(0)=0.075 \mathrm{~h} \mathrm{Mpc}^{-1}$

The interesting case of Quasi-Single Field Inflation

What about the CMB?

QSF correlations with local and equilateral

QSF auto-correlations

The interesting case of Quasi-Single Field Inflation

What about the CMB?

CMB Likelihood (Planck-like)

The interesting case of Quasi-Single Field Inflation

What about the LSS and CMB?

$C M B+$ LSS Fisher matrix

The interesting case of Quasi-Single Field Inflation

see also

LSS likelihood

$$
\bar{v}=0.5
$$

$\bar{v}=1.0$

$$
\bar{v}=1.5
$$

Then the bispectrum

Nishimichi et al. (2011)

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots
$$

If B_{0} was the only effect of NG initial conditions on the LSS then future, large volume surveys ($\sim 100 \mathrm{Gpc}^{3}$) could provide:

$$
\Delta f_{\mathrm{NL}}{ }^{\text {local }}<5 \text { and } \Delta f_{\mathrm{NL}^{\mathrm{eq}}}<10
$$

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

$$
\begin{array}{r}
B_{g}\left(k_{1}, k_{2}, k_{3}\right)=b_{1}^{3} B\left(k_{1}, k_{2}, k_{3}\right)+b_{1}^{2} b_{2} \underset{\downarrow}{P}\left(k_{1}\right) P\left(k_{2}\right)+2 \text { perm. }+\ldots \\
P=P_{0}+P_{G}^{\text {loop }}\left[P_{0}\right]+\begin{array}{l}
P_{N G}^{\text {loop }}\left[P_{0}, B_{0}\right] \\
B=B_{0}+B_{G}^{\text {tree }}\left[P_{0}\right]+B_{G}^{\text {loop }}\left[P_{0}\right]+B_{N G}^{\text {loop }}\left[P_{0}, B_{0}\right]
\end{array} \\
\begin{array}{c}
\text { Primordial component } \\
\text { (large scales) }
\end{array} \\
\begin{array}{c}
\text { Effect on nonlinear } \\
\text { evolution (small scales) }
\end{array}
\end{array}
$$

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

Primordial component (large scales)

Effect on nonlinear evolution (small scales)

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

Primordial component (large scales)
$\Delta b_{1, N G}\left(f_{N L}, \vec{k}\right)=\Delta b_{1, s i}\left(f_{N L}\right)+\Delta b_{1, s d}\left(f_{N L}, b_{1, G}, \vec{k}\right)$
$\Delta b_{2, N G}\left(f_{N L}, \vec{k}_{1}, \vec{k}_{2}\right)=\Delta b_{2, s i}\left(f_{N L}\right)+\Delta b_{2, s d}\left(f_{N L}, b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$

Effect on nonlinear evolution (small scales)

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

Primordial component (large scales)
$\Delta b_{1, N G}\left(f_{N L}, \vec{k}\right)=\Delta b_{1, s i}\left(f_{N L}\right)+\Delta b_{1, s d}\left(f_{N L}, b_{1, G}, \vec{k}\right)$
$\Delta b_{2, N G}\left(f_{N L}, \vec{k}_{1}, \vec{k}_{2}\right)=\Delta b_{2, s i}\left(f_{N L}\right)+\Delta b_{2, s d}\left(f_{N L}, b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$

$$
\Delta b_{2, s d, b}\left(k_{1}, k_{2}, f_{N L}\right)=2 f_{N L} \delta_{c}\left[b_{2, G}+\left(\frac{13}{21}-\frac{1}{\delta_{c}}\right)\left(b_{1, G}-1\right)\right]\left[\frac{1}{M\left(k_{1}, z\right)}+\frac{1}{M\left(k_{2}, z\right)}\right]
$$

The Galaxy Bispectrum: NG and nonlinear bias

The galaxy bispectrum at large scales

Primordial component (large scales)
$\Delta b_{1, N G}\left(f_{N L}, \vec{k}\right)=\Delta b_{1, s i}\left(f_{N L}\right)+\Delta b_{1, s d}\left(f_{N L}, b_{1, G}, \vec{k}\right)$
$\Delta b_{2, N G}\left(f_{N L}, \vec{k}_{1}, \vec{k}_{2}\right)=\Delta b_{2, s i}\left(f_{N L}\right)+\Delta b_{2, s d}\left(f_{N L}, b_{1, G}, b_{2, G}, \vec{k}_{1}, \vec{k}_{2}\right)$

- We test this model in N -body simulations with local NG initial conditions

$$
\begin{gathered}
\left\langle\delta \delta \delta_{h}\right\rangle=\delta_{D}\left(\vec{k}_{123}\right) B_{m m h} \\
\left\langle\delta_{h} \delta_{h} \delta_{h}\right\rangle=\delta_{D}\left(\vec{k}_{123}\right) B_{h} \\
P_{h} \rightarrow b_{1, G}, \Delta b_{1, s i} \\
B_{h, G} \rightarrow b_{2, G} \\
\Delta B_{h, N G} \rightarrow \Delta b_{2, s i}
\end{gathered}
$$

The Halo Bispectrum: theory vs. simulations

Matter-matter-halo bispectrum:

$$
B_{m m h}\left(k_{1}, k_{2} ; k_{3}\right)=b_{1}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right)+b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of θ with $k_{1}=0.05 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.07 \mathrm{~h} / \mathrm{Mpc}$

$$
M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}
$$

The Halo Bispectrum: theory vs. simulations

Matter-matter-halo bispectrum:

$$
B_{m m h}\left(k_{1}, k_{2} ; k_{3}\right)=b_{1}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right)+b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of θ with $k_{1}=0.07 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.08 \mathrm{~h} / \mathrm{Mpc}$

$$
M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}
$$

The Halo Bispectrum: theory vs. simulations

Halo bispectrum:

$$
\begin{aligned}
B_{h}\left(k_{1}, k_{2}, k_{3}\right)= & b_{1}^{3}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
& +b_{1}\left(f_{N L}, k_{1}\right) b_{1}\left(f_{N L}, k_{2}\right) b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)+c y c .
\end{aligned}
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of θ with $k_{1}=0.05 \mathrm{~h} / \mathrm{Mpc}, k_{2}=0.07 \mathrm{~h} / \mathrm{Mpc}$

[^0]

The Halo Bispectrum: theory vs. simulations

Halo bispectrum:

$$
\begin{aligned}
B_{h}\left(k_{1}, k_{2}, k_{3}\right)= & b_{1}^{3}\left(f_{N L}, k\right) B\left(k_{1}, k_{2}, k_{3}\right) \\
& +b_{1}\left(f_{N L}, k_{1}\right) b_{1}\left(f_{N L}, k_{2}\right) b_{2}\left(f_{N L}, k_{1}, k_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)+c y c .
\end{aligned}
$$

$B\left(k_{1}, k_{2}, \theta\right)$ as a function of θ with $k_{1}=0.07 \mathrm{~h} / \mathrm{Mpc}, \mathrm{k}_{2}=0.08 \mathrm{~h} / \mathrm{Mpc}$ $M>1.6 \times 10^{13} h^{-1} \mathrm{M}_{\odot}$

[^1]

The Halo Bispectrum: theory vs. simulations

X^{2}, for all triangles, as a function of $k_{\text {max }}$

The Halo Bispectrum: theory vs. simulations

Gaussian halo bias
Best-fit bias parameters and their peak-background split predictions

fit all triangular configurations up to $\mathrm{k}=0.07 \mathrm{~h} / \mathrm{Mpc}$ for

Non-Gaussian, scale-independent, halo bias corrections
$b_{1, G}, b_{2, G}, \Delta b_{1, G}$ and $\Delta b_{2, G}$

Halo Power Spectrum vs. Halo Bispectrum

Cumulative signal-to-noise for the effect of NG initial conditions on matter and galaxy correlators ($\mathrm{P} \& B$)

Sum of all configurations up to $k_{\max }$

$$
\left(\frac{S}{N}\right)_{P}^{2}=\sum_{k}^{k_{\max }} \frac{\left(P_{N G}-P_{G}\right)^{2}}{\Delta P^{2}} \quad\left(\frac{S}{N}\right)_{B}^{2}=\sum_{k_{1}, k_{2}, k_{3}}^{k_{\max }} \frac{\left(B_{N G}-B_{G}\right)^{2}}{\Delta B^{2}}
$$

The cumulative NG effect is comparable at mildly nonlinear scales

Halo Power Spectrum vs. Halo Bispectrum

What is the signal in squeezed configurations?

Halo Power Spectrum vs. Halo Bispectrum

What is the signal in squeezed configurations?

Almost all signal is in squeezed configurations for massive halos!

A Fisher matrix analysis for Galaxy correlators

The uncertainty on $f_{N L}$ (local) from Power Spectrum \& Bispectrum (\& both)

The matter bispectrum

Matter Power Spectrum

In Perturbation Theory ...

Linear power spectrum

Gravity-induced contributions (depending on P_{0} alone)

Additional gravity-induced contributions present only for NG initial conditions (B_{0})

Matter Power Spectrum

In Perturbation Theory ...

matter power spectrum

Additional gravity-induced contributions present only for NG initial conditions (B_{0})

Few percent effect at small scales

 for allowed values of $f^{\mathrm{N} L}$In the Halo Model:
$P(k)=P^{1 h}(k)+P^{2 h}(k), \quad$ where
$P^{1 h}(k)=\int \mathrm{d} m n(m)\left(\frac{m}{\bar{\rho}}\right)^{2}|u(k \mid m)|^{2}$
$P^{2 h}(k)=\int \mathrm{d} m_{1} n\left(m_{1}\right)\left(\frac{m_{1}}{\bar{\rho}}\right) u\left(k \mid m_{1}\right) \int \mathrm{d} m_{2} n\left(m_{2}\right)\left(\frac{m_{2}}{\bar{\rho}}\right) u\left(k \mid m_{2}\right) P_{h h}\left(k \mid m_{1}, m_{2}\right)$

The matter bispectrum and PNG: small scales

In Perturbation Theory ...

The matter bispectrum and PNG: small scales

Primordial Gravity-induced component
contributions

Additional gravity-induced contributions present for NG initial conditions (B_{0})

Squeezed configurations $B(\Delta k, k, k)$ as a function of k with $\Delta k=0.01 \mathrm{~h} / \mathrm{Mpc}$

```
ES (2009)
ES, Crocce & Desjacques (2010)
```


The matter bispectrum and PNG: even smaller scales

Beyond PT: The Halo Model

There is a significant effect of NG initial conditions of about 5-15\% on all triangles, at small scales and at late times for $f_{N L}=100$

The matter bispectrum and PNG: even smaller scales

Beyond PT: The Halo Model

Squeezed configurations $B(\Delta k, k, k)$ as a function of k with $\Delta k=0.01 \mathrm{~h} / \mathrm{Mpc}$

The matter bispectrum and PNG: even smaller scales

Beyond PT: The Halo Model

$f_{N L}=0$

$f_{N L}=0$

galaxies

ES \& Scoccimarro (2005)
weak lensing

Conclusions

- Quasi-Single Field inflation provides very interesting predictions for scale-dependent bias: given a detection of $f_{N L}$ by Planck we could possibly learn something on the structure of the field-space in the early Universe.
- We do have a good understanding of the multiple effects of PNG on the galaxy bispectrum at large scales (with room for improvement!)
- The impact of NG on nonlinear evolution of structure is significant, particularly in terms of the matter bispectrum: can this be detected in weak lensing surveys?
- A complete analysis of the large-scale structure (e.g. galaxy power spectrum and bispectrum) can do better than power spectrum alone: smaller uncertainties on NG parameters for virtually any model of nonGaussianity

[^0]: ES, Crocce \& Desjacques (2011)

[^1]: ES, Crocce \& Desjacques (2011)

