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The power spectrum, first

Dalal et al. (2008)
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P!! and the halo-matter cross spectrum Ph! ¼ h!"
h!i. We

have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
dark matter particles. We have checked, however, that

using the halo auto spectra to compute bias gives consistent
results as the cross spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in Fig. 7.
As can be seen, we numerically confirm the form of the

predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individual
simulations plotted in Fig. 8 are large. We therefore at-
tempt to improve the statistics on the comparison by com-
bining the bias measurements from multiple simulations.
Figure 8 plots the average ratio between the bias measured
in our simulations and our analytic prediction, Eq. (9),
using !c ¼ 1:686 as predicted from the spherical collapse
model [78]. In computing the average plotted in this figure,
we used a uniform weighting across the different simula-
tions, redshifts, and mass bins. Alternative weightings can
shift the results by #10%, so we conservatively estimate
the systematic error in our comparison to be 20%. The
agreement between our numerical simulation results and
our predicted bias scale dependence, Eq. (9), is excellent
and perhaps surprising. Naively, we might expect a some-
what larger collapse threshold !c to apply, considering the
ellipsoidal rather than spherical nature of the collapse of
halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulas for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to constrain
cosmological parameters, in particular dark energy pa-
rameters, by exploiting the exponential sensitivity of the
galaxy cluster abundance on cosmology. Similarly, a major
goal for upcoming redshift surveys is to constrain dark
energy by localizing baryonic acoustic oscillation (BAO)
features in the galaxy power spectrum at multiple redshifts.
Examples of upcoming surveys include the Atacama
Cosmology Telescope,4 South Pole Telescope,5 Dark
Energy Survey,6 WiggleZ,7 Planck,8 SuperNova/
Acceleration Probe,9 and the Large Synoptic Survey
Telescope.10

Because primordial non-Gaussianity affects both the
abundance and power spectra of massive halos, both of
these types of surveys will be well suited for constraining
NG. On the other hand, potential NG could, in principle,

FIG. 8 (color online). Ratio of the bias shift !b measured
from our simulations to that predicted by Eq. (9), using !c ¼
1:686. Biases were computed from cross spectra measured on 28
simulations with 5 various fNL ð%500;%100; 100; 500Þ, 3
various redshifts (z ¼ 0, 0.5, 1), and 5 halo mass bins. Note
that at higher k, nonlinear evolution also generates scale
dependence in the bias [80].

FIG. 7 (color online). Cross-power spectra for various fNL.
The upper panel displays Ph!ðkÞ, measured in our simulations at
z ¼ 1 for halos of mass 1:6' 1013M( <M< 3:2' 1013M(.
The solid line corresponds to the theoretical prediction for P!!

with a fitted bias b0 ¼ 3:25. We see a strongly scale-dependent
correction to the bias for fNL ! 0, increasing towards small k
(large scales). The bottom panel displays the ratio
bðk; fNLÞ=bðk; fNL ¼ 0Þ. The errors are computed from the
scatter amongst our simulations and within the bins. Triangles
correspond to our large (10243 particle) simulations whereas
diamonds correspond to our smaller (5123 particle) simulations.
The dotted lines correspond to our expression for the bias
dependence on fNL defined in Eq. (9).

4http://wwwphy.princeton.edu/act/
5http://spt.uchicago.edu
6http://www.darkenergysurvey.org
7http://astronomy.swin.edu.au/wigglez/WiggleZ/

Welcome.html
8http://www.rssd.esa.int/Planck
9http://snap.lbl.gov

10http://www.lsst.org
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Galaxy bias and the galaxy power spectrum

P!! and the halo-matter cross spectrum Ph! ¼ h!"
h!i. We

have used the cross spectrum rather than the halo auto
spectrum because the former should be less sensitive to
shot noise from the small number of halos compared to
dark matter particles. We have checked, however, that

using the halo auto spectra to compute bias gives consistent
results as the cross spectra; i.e. we find no evidence for
stochasticity. Examples of the various power spectra and
resulting bias factors are plotted in Fig. 7.
As can be seen, we numerically confirm the form of the

predicted scale dependence. Because we focus on the
statistics of rare objects, the errors on bias from individual
simulations plotted in Fig. 8 are large. We therefore at-
tempt to improve the statistics on the comparison by com-
bining the bias measurements from multiple simulations.
Figure 8 plots the average ratio between the bias measured
in our simulations and our analytic prediction, Eq. (9),
using !c ¼ 1:686 as predicted from the spherical collapse
model [78]. In computing the average plotted in this figure,
we used a uniform weighting across the different simula-
tions, redshifts, and mass bins. Alternative weightings can
shift the results by #10%, so we conservatively estimate
the systematic error in our comparison to be 20%. The
agreement between our numerical simulation results and
our predicted bias scale dependence, Eq. (9), is excellent
and perhaps surprising. Naively, we might expect a some-
what larger collapse threshold !c to apply, considering the
ellipsoidal rather than spherical nature of the collapse of
halos in this mass range [70].

VI. COSMOLOGICAL CONSEQUENCES

Having derived fitting formulas for the abundance and
clustering of halos in NG models, we now investigate how
well upcoming surveys may constrain fNL, and whether
NG could possibly affect the constraints derived on other
cosmological parameters. We focus on galaxy cluster sur-
veys and redshift surveys. Cluster surveys aim to constrain
cosmological parameters, in particular dark energy pa-
rameters, by exploiting the exponential sensitivity of the
galaxy cluster abundance on cosmology. Similarly, a major
goal for upcoming redshift surveys is to constrain dark
energy by localizing baryonic acoustic oscillation (BAO)
features in the galaxy power spectrum at multiple redshifts.
Examples of upcoming surveys include the Atacama
Cosmology Telescope,4 South Pole Telescope,5 Dark
Energy Survey,6 WiggleZ,7 Planck,8 SuperNova/
Acceleration Probe,9 and the Large Synoptic Survey
Telescope.10

Because primordial non-Gaussianity affects both the
abundance and power spectra of massive halos, both of
these types of surveys will be well suited for constraining
NG. On the other hand, potential NG could, in principle,

FIG. 8 (color online). Ratio of the bias shift !b measured
from our simulations to that predicted by Eq. (9), using !c ¼
1:686. Biases were computed from cross spectra measured on 28
simulations with 5 various fNL ð%500;%100; 100; 500Þ, 3
various redshifts (z ¼ 0, 0.5, 1), and 5 halo mass bins. Note
that at higher k, nonlinear evolution also generates scale
dependence in the bias [80].

FIG. 7 (color online). Cross-power spectra for various fNL.
The upper panel displays Ph!ðkÞ, measured in our simulations at
z ¼ 1 for halos of mass 1:6' 1013M( <M< 3:2' 1013M(.
The solid line corresponds to the theoretical prediction for P!!

with a fitted bias b0 ¼ 3:25. We see a strongly scale-dependent
correction to the bias for fNL ! 0, increasing towards small k
(large scales). The bottom panel displays the ratio
bðk; fNLÞ=bðk; fNL ¼ 0Þ. The errors are computed from the
scatter amongst our simulations and within the bins. Triangles
correspond to our large (10243 particle) simulations whereas
diamonds correspond to our smaller (5123 particle) simulations.
The dotted lines correspond to our expression for the bias
dependence on fNL defined in Eq. (9).
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Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent 
correction for NG initial conditions of the local type

Dalal et al. (2008)

Measurements of the power spectrum of 
dark matter halos in N-body simulation 
with local NG initial conditions

“Gaussian” 
bias

Scale-dependent correction 
due to local non-Gaussianity

Large effect on large scales!

Pg(k) = [b1 +∆b1(fNL, k)]
2 P (k)

∆b1,NG(fNL, k) ∼
fNL

D(z) k2



Dalal et al. (2008):
The bias of galaxies receives a significant scale-dependent 
correction for NG initial conditions of the local type
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Galaxy bias and the galaxy power spectrum
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The bias of galaxies receives a 
correction for NG initial conditions of any type

“Gaussian” 
bias

correction

Pg(k) = [b1 +∆b1(fNL, k)]
2 P (k)
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Galaxy bias and the galaxy power spectrum
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d3q[...]BΦ(k, q, |�k − �q|) Initial bispectrum

Matarrese & Verde (2008)
Desjacques, Schmidt & Jeong (2011)
Scoccimarro et al. (2011)



What about other models? 

The scale-dependence of bias can be different 
for other models, or not be there at all ...

split approach [40]

∆bI = bNG
1 − bG1 = −∂ lnRNG(M)

∂δc
, (6.5)

with RNG(M) being the ratio of the non-Gaussian to the Gaussian mass function. Here,
however, we treat ∆bI as a free parameter and compare it later on with the prediction
derived from the mass functions. We choose q as the second free parameter. All other
quantities in Eq. (6.4) are we derive from the theory and are kept fixed.

In Fig. 8, we show as an example the effect of local non-Gaussianity on the halo bias
for halos of mass 1.2− 2.4× 1014M⊙/h at z = 0. Note that we plot ∆b(k) + 0.1. As ∆bI is
negative, this addition of 0.1 is needed to still make use of the logarithmic scale.

The different line types visualize the effect of the different terms in Eq. (6.4). The
solids lines show the best fit to the data (using all modes up to kmax = 0.1Mpc/h) and
includes all terms given above. The short-dashed lines neglects ∆bI appearing inside the
square brackets in Eq. (6.4). The inclusion of this term makes the non-Gaussian bias non-
linear in fNL [55], since ∆bI depends on fNL. The dot-dashed line neglects ∆bI completely.
This scale-dependent bias shift becomes important on smaller scales (k > 0.02), for which
the scale-dependent part becomes small.
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Figure 9. Same as in Fig. 8, but for the orthogonal shape of non-Gaussianity. Note, however, that
here the halos are at redshift z = 1.

An example of the measured non-Gaussian bias from the simulations of the orthogonal
type is given in Fig. 9. Here, the halos have again a mass of 1.2 − 2.4 × 1014M⊙/h, but
were found in snapshots at z = 1. Subsequently, the number of halos is smaller than in the
previous figure and the residual shot noise is larger. The line types have the same meaning as
before. On large scales, the halo bias scales as ∼ k−1 as predicted by the theory. Hence, with
increasing wavenumber, the effect does not drop as rapidly as in the local case and extends
to smaller scales.
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Figure 10. Same as in Fig. 8, but for the equilateral shape of non-Gaussianity. Note the linear scale

of the y-axis.

Next, we present an example of the non-Gaussian halo bias induced by the equilateral

shape. In Fig. 10, the halo bias corresponding to two different mass bins at z = 0 is shown.

As expected, the scale dependence is very weak and in agreement with the theoretical predic-

tions. In particular, the observed mass dependence of the effect is consistent with the model

predictions.

After having discussed for each type of non-Gaussianity typical examples, we show the

complete set of best fit values of the fitting parameters in Fig. 11. On the left-hand side, the

best fit values of the fudge factor q are presented. Different colours correspond to different
redshifts: z = 1.5 (red), z = 1 (green), z = 0.67 (blue), and z = 0 (magenta). Triangles,

boxes, and circles depict the three different realizations of the initial Gaussian random field

used for the generation of the initial conditions. In the case of the local and orthogonal type,

the open symbols correspond to fNL = 60 and fNL = −250, respectively. Filled symbols show

the results for fNL = 250 (local), fNL = −1000 (orth.), and fNL = 1000 (eql.). For clarity,

the points of each mass bin are spread over the range of each mass bin.

For each type of non-Gaussianity, we recover within the error bars the same q value,

which was needed to bring the mass functions in agreement with analytic predictions. This

finding is very interesting and —if solidified by larger simulations— may help to lead to a

better theoretical understanding of the halo biasing (see discussion in [66]).

On the right-hand side of Fig. 11, the best fit values of ∆bI normalized by fNL are

shown. The colour and symbol coding is the same as before. As open and filled symbols

(corresponding to different fNL values) are consistent with each other, we can infer that the

scale-independent shift is linear in fNL for the fNL values probed. The solid lines represent

the predictions from Eq. (6.5) using the LV mass function ratio, RNG
LV (M), and taking the

measured fudge factor q into account. Keeping in mind that the LV mass function is not
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simulations:

∆b(k) = bNG(k)− bG(k) =
PNG
hm (k)

PG
m (k)

−
PG
hm(k)

PG
m (k)

. (6.3)

Note that we used the Gaussian matter power spectrum in the denominator for the non-
Gaussian bias. This has the advantage that by doing this we do not need to include β(k) in
the modelling of ∆b(k) (see Eq. (2.1) and Eq. (2.4)).
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Figure 8. Local non-Gaussian bias of halos with mass 1.2 × 1014 Mpc/h < M < 2.4 × 1014 Mpc/h
at z = 0. The difference of the bias measured from the non-Gaussian simulations and Gaussian
simulations is depicted by the data points (for computation of the errorbars, see App. B). The solid
lines show the best fit using the model given in Eq. 6.4. The dot-dashed lines show the model
predictions when the scale-independent bias shift, ∆bI , is neglected. The short-dashed lines neglect
the term which is non-linear in fNL (see text for details). Thick lines and red symbols correspond to
fNL = 250, while thin lines and blue symbols show the results for fNL = 60. Note that we actually
show ∆b+ 0.1 to allow for a logarithmic scale.

As the non-Gaussian and the Gaussian simulation share the same realization of the
initial Gaussian field, ∆b(k) is almost free of sample variance and, in addition, has smaller
shot noise than bNG(k) and bG(k) individually. We estimate the error on ∆b(k) directly from
the distribution of ∆b(k) in each k bin (for details, see App. B).

Following Eq. 2.1, we model ∆b(k) by

∆b(k) = ∆bI + fNL
�
bG1 +∆bI − 1

� qδc
D(z)

FM (k)

MM (k)
, (6.4)

where bG1 is the linear halo bias obtained from the Gaussian simulation on large scales (see
App. B). The scale-independent shift, ∆bI , can be predicted by the difference in the linear
bias derived from the non-Gaussian and Gaussian mass functions using the peak-background
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Wagner & Verde (2010)
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QSF inflation predicts a family of models 
parametrized by

with intermediate “shapes” between the 
equilateral and local 

The interesting case of Quasi-Single Field Inflation
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II. QUASI-SINGLE FIELD INFLATION

A. Theory

Inflation model building in supergravity and string theory naturally leads to models of quasi-single field inflation. In

this class of multifield models, there is one field direction, the inflaton direction, that satisfies the slow-roll conditions

through either symmetry or fine-tuning, and many other directions, the isocurvaton directions, that have masses of

order the Hubble parameter, H. Supersymmetry plays an essential role in determining the masses of these isocurva-

tons. Without supersymmetry, at the tree level, the coupling of the scalar fields to the spacetime curvature would also

lead to masses of order H, but these masses will run away at loop levels from radiative corrections, analogous to the

situation of the Higgs mass in particle physics. In cosmology, the supersymmetry provides the only mechanism for the

masses to dynamically maintain this value. The radiative corrections to the mass from the scalar and fermion loops

automatically cancel down to the supersymmetry breaking scale H. Therefore, despite that the Hubble parameter

is determined by a sector independent of the isocurvatons, and no matter how large or small the H is, the mass of

light scalars will always trace the value of H through the universal gravitational coupling. For the inflaton, this mass

is the origin of the η-problem in supergravity inflation models, and needs to be tuned away. For the isocurvatons,

they become signatures of supersymmetry in the primordial universe. Finding observational evidence of such scalars

becomes an outstanding theoretical and experimental challenge.

The generic couplings between these isocurvatons and the inflaton have several possible consequences on the pri-

mordial density perturbation. The simplest one is the correction to the two-point correlation function, the power

spectrum, of the density perturbation. Since the power spectrum is a function of one momentum, the observable

effects only appear if such a correction is non-scale-invariant. Furthermore, we expect these effects can be easily

degenerate with other types of corrections. The most distinctive signatures of these isocurvatons come from the three

or higher-point correlation functions. Unlike the inflaton, the self-interactions of these isocurvaton fields are free of

any slow-roll condition and are naturally very large. These become the sources of large non-Gaussianities. More

importantly, these non-Gaussianities turn out to have very special properties. For example for the scalar three-point

function �Φ3� in the simplest QSFI model, the momentum dependence in the squeezed limit k3 � k1 = k2 is given

by [6, 7],

�Φ3� →






k
−2+α
3 , 0 <

m
2

H2
<

9

4
+

�
ln

k3

k1

�−1

,

k
−3/2
3 ln

k3

k1
,

m
2

H2
≈ 9

4
,

(1)

where

α =
1

2
− ν , ν ≡

�
9

4
− m2

H2
. (2)

This is a property of the shape of the non-Gaussianity and is present even if the non-Gaussianity is perfectly scale-

invariant. For QSFI, the stability of the inflaton requires m
2 ≥ 0, so α ≥ −1. As m

2
/H

2
> 9/4, the isocurvatons

gradually become too massive to have significant effects on density perturbations. So we are mainly interested in

−1 ≤ α ≤ 1/2, i.e. 3/2 ≥ ν ≥ 0. Such a momentum dependence lies between that of the equilateral shape (α = 1)

which arises in single field models with large non-Gaussianity or its direct multifield generalization, and that of the

local shape (α = −1) which arises in multifield models with light isocurvatons m � H. (See [9–11] for reviews.)

While the detailed dependence of α on the isocurvaton masses may be model-dependent in more general situations,

the signature intermediate momentum dependence in the squeezed limit is a robust evidence for the existence of such

isocurvatons. This can be seen qualitatively as follows [6, 7]. The fluctuations of the massive scalars decay after

the horizon-exit. For heavy scalars they decay immediately after the horizon-exit, and for lighter scalars they decay

more slowly. The scalar interactions, responsible for the large non-Gaussianities, are therefore generated between

the horizon scale and the superhorizon scales. The former is responsible for the equilateral-like shapes, and the

latter local-like shapes. As a consistency check, if we look at the special limit of massless scalars, the superhorizon

fluctuations do not decay, and we recover the characteristic local shape in the squeezed limit. This momentum

dependence can be also seen more quantitatively as follows [8], at least for α close to −1 . Ignoring the physics within

and near the horizon scale, the squeezed limit of the three-point function can be regarded as the modulation of the

two-point function of two short-wavelength modes from a long-wavelength mode. After horizon exit, we know that

the amplitude of a massive scalar decays as ∼ a
−1−α

as a function of the scale factor a. So the amplitude of the

long-wavelength mode has decayed by a factor of (k3/k1)
1+α

by the time the short-wavelength modes start to exit the

Some comments are in order, to explain the behavior of
sð!Þ near ! ¼ 0 and ! ¼ 3=2. We have approximated the

asymptotic behavior ofHð1Þ
! ð$p3"iÞ in the small p3 limit as

$ið2!!ð!Þ=#Þð$p3"iÞ$!. For very small !% 0, this re-
quires p3=p1 & e$1=!. So p3 needs to be increasingly
small as ! ! 0. Otherwise, if we fix a small p3, near ! ¼
0 we should instead use ið2=#Þ lnð$p3"iÞ as a better
approximation. Therefore the rising behavior in Fig. 2
near ! ¼ 0 does not mean that the non-Gaussianities are
blowing up, rather signals the change of the shape to

% lnðp3=p1Þ
p7=2
1 p2p

3=2
3

: (14)

As ! ! 3=2, m ! 0, the curvaton fluctuations do not
decay, so its conversion to the curvature mode diverges
in the constant turn case and an e-fold cutoff is necessary.
Interestingly, in this limit, our shape approaches the local
form, as expected from the multifield models studied in
Refs. [5–9]. But here the non-Gaussianities can be made
very large by having a large V 000, since we are not restricted
to the slow-roll conditions even in the massless isocurvaton
limit.

Combining (13) and (14), a good ansatz for the full
shape can be taken as, up to an overall amplitude,

$ ðp1p2p3Þ$3=2

ðp1 þ p2 þ p3Þ3=2
N!

!
8p1p2p3

ðp1 þ p2 þ p3Þ3
"
; (15)

where N! is the Neumann Function. This ansatz gives an
overall good match with the numerical results [11].

Note that in the squeezed limit, this one-parameter

family of shapes goes as p$3=2$!
3 . This interpolates be-

tween the equilateral form, p$1
3 , and the local form, p$3

3
[13], so we call it the ‘‘intermediate form.’’ Two examples
of the shape ansatz are shown in Fig. 3.

For comparison, we look at the three-point function of
the isocurvature modes, h$%3i. Evaluating it after the
horizon exit, we find that its amplitude is decaying and
its shape goes as p$2!

3 in the squeezed limit. So at least in
this model, the shape of the correlation function is changed

during the transfer. It is important to study this aspect in
other multifield models, such as [14].

V. SIZE OF NON-GAUSSIANITIES

The size fNL of a bispectrum is defined by taking the
equilateral limit [15],

h&3i ! 9

10
fNL

1

p6
1

P2
& ð2#Þ7$3

!X
pi

"
; (16)

where P& is the power spectrum. Using the relation & ¼
$H$'= _' and P& ¼ H4=ð4#2R2 _'20Þ ( 6:1) 10$9, we get

fintNL ¼ (ð!Þ 1

P1=2
&

!$V 000

H

"! _'0
H

"
3
: (17)

We investigate the order of magnitude of each factor. The
(ð!Þ should be evaluated numerically, similar to sð!Þ, but
now in the equilateral limit. For example it is Oð1Þ and
positive near ! ¼ 0. If we require that, in Vð%Þ, the qua-
dratic term dominates over the cubic interaction for % &
H, so that we can trust the mode function, we need
jV 000j=H < ðm%=HÞ2 %Oð1Þ. The perturbative method we
used gives restriction on the size of _'0=H because this
parameter determines the strength of the transfer vertex.
For example, the correction to the power spectrum can be
simply calculated using Fig. 1(b), $P& % ð _'0=HÞ2P& and it
is scale invariant, so for it to be perturbative we need
ð _'0=HÞ2 & 1. It is possible that the non-Gaussianity is
larger if _'0=H % 1, but to trust the perturbative results in
this paper, _'0=H <Oð1Þ. Overall, we see that jfintNLj &
Oð104Þ, and its sign is the opposite of V 000. It will be very
interesting to constrain it using the current and future data
[16]. It is also interesting to study what the natural values
for V 000 and _'0 are from a more fundamental theory.
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FIG. 2 (color online). The numerical coefficient sð!Þ in the
squeezed limit.

FIG. 3 (color online). Shapes of bispectra with intermediate
form: (1) quasiequilateral (! ¼ 0:2), (2) quasilocal (! ¼ 1). The
amplitudes are normalized by a factor of ðp1p2p3Þ2 to be
dimensionless.
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ν = 0.2 ν = 1

m is the mass of the 
“isocurvaton” fields, i.e. field 
orthogonal to the inflaton 
trajectory in field-space 

Chen & Wang (2010)

JCAP04(2010)027

Figure 1. This figure illustrates a model of quasi-single field inflation in terms of turning trajectory.
The θ direction is the inflationary direction, with a slow-roll potential. The σ direction denotes the
isocurvature direction, which typically has mass of order H .

larger than O(H), quasi-single field inflation makes the same prediction as the single field
inflation. However, once large couplings exist and the mass are of order H, we will show that
these massive isocurvatons can have important effects on density perturbations.

In this paper, we shall study a simple model of quasi-single field inflation [2]. In this
model, the coupling between the inflaton and the massive isocurvaton is introduced by a
turning trajectory. The tangential direction of this turning trajectory is the usual slow-roll
direction, while the orthogonal direction is lifted by a mass of order H. See figure 1.

The motivations for investigating quasi-single field inflation are as follows.

• UV completion and fine-tuning in inflation models. To satisfy the conditions for infla-
tion, fine-tunings or symmetries should generally be evoked. At least this is found to be
the case for models that have reasonable UV completion in string theory and supergrav-
ity [3, 4]. For slow-roll inflation, this means that, in the inflationary background, the
light fields will typically acquire mass of order the Hubble parameter H, which is too
heavy to be the inflaton candidates. On the other hand, in a UV completed theory, mul-
tiple light fields arise naturally. Taking these facts into consideration, a natural picture
of inflation emerges: There is one inflation direction with mass m ! H, and some other
directions in the field space with m ∼ H. In contrast to the slow-roll potential, large
higher order terms in the potential such as V ′′′ ∼ H and V ′′′′ ∼ 1 can arise naturally in
these non-flat directions. To have more than one flat direction needs extra fine-tuning.
The above picture for inflation suggests the quasi-single field inflationary models.

• Inflationary phenomenology. When the inflaton trajectory turns in the field space,
isocurvature perturbation is converted to curvature perturbation. Precisely understand-
ing the effect of such a conversion on density perturbations is in general an important
but difficult question. Quasi-single field inflation provides explicit examples where such
a conversion can be calculated from first principles and give non-trivial predictions, such
as new shapes of large non-Gaussianities and running of the density perturbations.

• Filling the gap between single and multiple field inflation. Quasi-single field inflation fills
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FIG. 7: Relative scale-dependent correction ∆bsd(k)/bG (tick curves) as a function of k for two representative halo masses
m = 1012.5 h−1 M⊙ (dashed curves) and m = 1013.5 h−1 M⊙ (continuous curves). The choice of the models shown is the same
as Fig. 6. Thin curves correspond to sole contribution due to the first term on the r.h.s. of Eq. (23) while light-colored curves
denotes negative values.

instead to sole contribution due to the first term on the r.h.s. of Eq. (23) while light-colored curves denotes negative
values. [more]

C. Fisher matrix

We perform a Fisher matrix analysis in order to determine the expected, simultaneus constraints on both the fNL

and ν parameters from of the future galaxy surveys. Similar forecasts, although in terms of the single fNL parameter,
have been performed, for the local model alone in [4, 45–48] for upcoming galaxy and clusters surveys. The cases
of equilateral and orthogonal non-Gaussianity, in addition to the local model, have been studied by [49] and [50],
focusing respectively on the EUCLID survey [51] (combining weak lensing with photometric and spectroscopic data)
and the eRosita, X-ray cluster survey [52]. In these works, the effects of non-local models include scale-dependent
corrections to halo bias, described by expressions analogous to Eq. (23). Forecasts for non-Gaussian models dependent

1
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k3/2
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1√
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∼ const

The scale-dependent
bias correction

ES, Chen, Fergusson & Shellard  (2012)



The interesting case of Quasi-Single Field Inflation
16

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 50
Ν � 1.5

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 100
Ν � 1.5

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 150
Ν � 1.5

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 50
Ν � 1

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 100
Ν � 1

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 150
Ν � 1

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 50
Ν � 0.5

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 100
Ν � 0.5

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fNL

Ν

fNL � 150
Ν � 0.5

FIG. 9: Same as Fig. 7 but for a limiting kmax(z) such that kmax(0) = 0.075hMpc−1

CMB transfer functions ∆l(k) to project forward as

bl1l2l3 =

�
2

π

�3 �
dxdk1dk2dk3 (xk1k2k3)

2 BO(k1, k2, k3)

∆l1(k1)∆l2(k2)∆l3(k3) jl1(k1x)jl2(k2x)jl3(k3x) . (43)

If the original bispectrum BΦ(k1, k2, k3) is separable, the complicated 4D integral (43) also separates and becomes
much more tractable. While the local model and the usual equilateral ansatz are separable, the quasi-local shape (4)
which interpolates between them is is not separable. Nevertheless, for a given QSF parameter ν, we can still calculate
bl1l2l3 by using a separable eigenmode expansion, but we will not describe the modal methodology here in detail (see
[62]).

In order to determine if a given theoretical bispectrum is present in the observational data, we employ the approx-
imate estimator

E =
1

Ñ2

�

limi

Gl1l2l3
m1m2m3

bl1l2l3
Cl1Cl2Cl3

al1m1al2m2al3m3 , (44)

with appropriate experimental effects incorporated - beam, noise and mask. The estimator essentially performs a
least squares fit between theory and data with the ratio above yielding the signal-to-noise. We can, in principle, use

Given a positive 
detection of fNL, 
how well can we 
constrain 
the parameter ν, 
in future galaxy surveys? 

Fisher matrix analysis of 
galaxy power spectrum 
measurements at k < kmax(z)
kmax(0) = 0.075 h Mpc-1

ES, Chen, Fergusson & Shellard  (2012)
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Figure 10. Left panel : estimate of the CMB correlation of the quasi-single field shape as a function

of the parameter ν with the local and equilateral shapes using the weighted shape correlator eq. (5.8).

Note that the ν = 1.5 model is nearly perfectly correlated with the local shape, whereas an 88%

correlation is achieved in the equilateral limit ν → 0. Right panel : estimate of the CMB correlations

of the QSF models with themselves C(B,B�
) as a function of the parameters ν, ν�. Note the large

plateau of strong correlations for models with 0 ≤ ν ≤ 0.75 and 0 ≤ ν� ≤ 0.75, which makes it difficult

distinguish QSF models with small ν.

extracted from the WMAP7 data [96] can be used to compare directly with the expansion

coefficients predicted theoretically from eq. (5.4).

Whether or not two values of the quasi-single field bispectrum parameter ν can be

distinguished by a given data set can be determined by a Fisher matrix analysis, essentially

the cross-correlator between the two CMB bispectra

C(B,B�
) =

1

N

�

li

Bl1l2l3B
�
l1l2l3

Cl1Cl2Cl3
, (5.6)

where the normalization is defined by

N =

����
�

li

B2
l1l2l3

Cl1Cl2Cl3

����
�

li

B�2
l1l2l3

Cl1Cl2Cl3
. (5.7)

However, this approach is extremely computationally demanding as we must calculate the

full bispectrum for each value of ν before we can make any comparison. This has been

achieved already for local and equilateral asymptotes but we would like a simpler method for

estimating the interpolants. As shown in [97], a fairly accurate measure of the Fisher matrix,

eq. (5.6), can be obtained from the shape correlator,

C̄(S, S�
) =

F (S, S�
)�

F (S, S)F (S�, S�)
. (5.8)

where

F (S, S�
) =

�

Vk

S(k1, k2, k3)S
�
(k1, k2, k3)ω(k1, k2, k3) dVk , (5.9)

with the bispectrum ‘shape’ S(k1, k2, k3) defined from the rescaled primordial bispectrum

S(k1, k2, k3) = (k1k2k3)
2BΦ(k1, k2, k3) . (5.10)
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extracted from the WMAP7 data [96] can be used to compare directly with the expansion

coefficients predicted theoretically from eq. (5.4).

Whether or not two values of the quasi-single field bispectrum parameter ν can be

distinguished by a given data set can be determined by a Fisher matrix analysis, essentially

the cross-correlator between the two CMB bispectra
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However, this approach is extremely computationally demanding as we must calculate the

full bispectrum for each value of ν before we can make any comparison. This has been

achieved already for local and equilateral asymptotes but we would like a simpler method for

estimating the interpolants. As shown in [97], a fairly accurate measure of the Fisher matrix,

eq. (5.6), can be obtained from the shape correlator,
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Figure 11. Expected joint constraints on the two parameters fNL and ν from measurements of
temperature bispectrum from Planck-like CMB observations. The shaded areas of decreasing colour
density corresponds to the 1-, 2- and 3-σ constraints from the forecasted likelihood function. For
comparison, the Fisher matrix results corresponding to 1- and 2-σ constraints are show by superim-
posed ellipses. These are qualitatively in agreement and identify the correct degeneracy directions,
but become inaccurate in degenerate regions for small ν.

Secondly, we diagonalize the Fisher matrix to extract the optimal uncorrelated basis, that
is, representing the matrix Fij as

F = V DVT , (5.12)

where V contains the unit eigenvectors vi and D is a diagonal matrix constructed from an
ordered list of the eigenvalues λi. PCA analysis of F for these QSF models reveals that
just two eigenvalues are dominant, with eigenvectors representing the local shape and an
equilateral-like shape. A third eigenvector makes a relatively small additional contribution
for a more accurate analysis.
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What about the LSS 
and CMB? 
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Figure 14. Same as figure 13 but with the more conservative choice of kmax = 0.075hMpc−1 at
z = 0 for the galaxy power spectrum analysis.

halo and galaxy bias. In addition we studied the detectability and the correlation with other
non-Gaussian models in CMB bispectrum measurements.

Scale-dependent bias corrections have been the subject of several studies in recent years
as they provide a remarkable test of squeezed configurations of the initial bispectrum. In the
particular case of the local model, where the primordial curvature bispectrum peaks precisely
in the squeezed limit, constraints on the amplitude parameter fNL from current measurements
of the power spectrum of high-redshift sources are already comparable to CMB results. In
this context, Quasi-Single Field models represent a veritable case study as they predict a one-
parameter family of curvature bispectra with variable momentum-dependence in the squeezed
limit, resulting in a correction to linear bias with a scale-dependence interpolating between
the one predicted by the local model to practically scale-independence.

In addition to this interesting phenomenological aspect, the determination of the pa-
rameter ν can also provide direct information on the high-energy theory. Supersymmetry
naturally determines the range of masses of light scalars during inflation. Interestingly, such
masses may be directly observable through QSF inflation models, in terms of the powers in
the peculiar scale-dependence in galaxy bias and/or momentum-dependence in CMB non-
Gaussianities. In this paper we investigated how much, in the event of the discovery of large
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LSS likelihood

Noreña, Verde, Barenboim, Bosch (2012)

see also

JCAP08(2012)019

Figure 2. Regions in the fNL, ν parameter space defined in eq. (2.2) satisfying∆χ2 ≤ 2.3, correspond-
ing to the 68.3% confidence level. In the squeezed limit this model behaves as 〈ζ3〉q→0 = 1/qν+3/2.
We show such regions for several fiducial models, showing that the uncertainties decrease as the fidu-
cial value of fNL becomes larger and the fiducial value of ν approaches 1.5, which corresponds to a
bispectrum shape that behaves like the local template in the squeezed limit.

minimum k is computed as kmin = 2π/V (zi)1/3. We divide the redshift range in shells with
a width ∆z = 0.1. The halo power spectrum and average number of galaxies are given
respectively in equations (3.6) and (4.1). The deviation of the halo power spectrum from
the fiducial model was computed by taking the difference between the halo power spectra of
the given model and the fiducial one computed using equation (3.7) to model the effect of
non-Gaussianity.

In figure 2 we show the ∆χ2 ≤ 2.3 regions corresponding to 68.3% joint confidence
levels for different values of the fiducial parameters ν̄ and f̄NL. For ν̄ = 0.5, which would

correspond to a squeezed limit going like 〈ζ3〉 q→0∼ 1/q2, the constraints on ν will be broad,
and even the detection of non-Gaussianity would be challenging, requiring very large values
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Figure 5. The halo bispectrum for some triangular configurations. Each panel shows the result for
an isosceles configuration specified by α ≡ k1/k3 and k ≡ k1 = k2. Error bars are measurements
from our simulations (the average and the standard error among different realizations) and solid
lines are their 4-th order polynomial fits, while we keep the terms up to second and linear order for
dashed and dotted lines. We use the outputs at z = 0.5 and consider the haloes more massive than
4.6 × 1013h−1M".

Nevertheless, both simulations and theory suggest that B(2)
h > B(1)

h > B(0)
h at the limit

of small k. The B(2)
h term will play an important role in constraining fNL from future surveys

where we can investigate such large scales.
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If B0 was the only effect of NG initial conditions on the LSS 
then future, large volume surveys (~100 Gpc3) could provide:

ΔfNLlocal < 5 and  ΔfNLeq < 10

Scoccimarro, ES & Zaldarriaga (2004), ES & Komatsu (2007)
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with

∆b1,si(fNL) = ∆b10,NG , (36)

∆b1,sd(k, fNL) =
2 fNL δc (b1,G − 1)

M(k, z)
. (37)

(38)

The quadratic bias function b2(k1,k2, fNL) is given instead by

b2(k1,k2, fNL) = b2,G +∆b2,NG(k1,k2, fNL) , (39)

where b2,G = b20,G is the constant, quadratic bias for Gaussian initial conditions while the non-Gaussian correction
is given this time by three contributions, with distinct dependencies on the two wavenumbers,

∆b2,NG(k1,k2, fNL) ≡ ∆b2,si(fNL) +∆b2,sd,a(k1,k2, fNL) +∆b2,sd,b(k1, k2, fNL) (40)

with

∆b2,si(fNL) = ∆b20,NG , (41)

∆b2,sd,a(k1,k2, fNL) = −68

21
fNLδc

b1,G − 1

M(k12, z)
, (42)

∆b2,sd,b(k1, k2, fNL) = 2 fNL δc

�
b2,G +

�
13

21
− 1

δc

�
(b1,G − 1)

� �
1

M(k1, z)
+

1

M(k2, z)

�
. (43)

III. THE MODEL

We will not consider any loop-correction coming from the bias expansion.

A. The halo and matter-halo power spectra

Form the bias relation eq. (31), the leading order contribution to the halo-matter cross-power spectrum is simply
given by

Pmh(k) = b1(k, fNL)Pm(k) . (44)

For Gaussian initial conditions this reduces to Ph,G(k) = b1,G Pm,G(k) while the non-Gaussian correction is given by

∆Pmh,NG(k) = b1,G ∆Pm,NG(k) + [∆b1,si +∆b1,sd(k)]Pm,G +O(f2
NL) . (45)

For the halo power spectrum we have instead

Ph(k) = b21(k, fNL)Pm(k) , (46)

with the non-Gaussian correction given by

∆Ph,NG(k) = b21,G ∆Pm,NG(k) + 2 b1,G [∆b1,si +∆b1,sd(k)]Pm,G +O(f2
NL) . (47)

B. The halo and matter-matter-halo bispectra

The cross matter-matter-halo bispectrum Bmmh is defined as

�δ(k1)δ(k2)δh(k3)� ≡ δD(k123)Bmmh(k1, k2; k3) , (48)

where we assume the third component k3 to correspond to the halo density contrast. The expression for the matter-
matter-halo cross-bispectrum at leading order is given by

Bmmh(k1, k2; k3) = b1(k3, fNL)Bm(k1, k2, k3) + b2(k1,k2, fNL)Pm(k1)Pm(k2) , (49)
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Generic configurations (II), Bδδh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 8: Generic configurations (II) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.05hMpc−1, k2 =
0.07hMpc−1. See text for explanation.
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Generic configurations (II), Bδδh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 8: Generic configurations (II) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.05hMpc−1, k2 =
0.07hMpc−1. See text for explanation.

B(k1, k2, θ) as a function of θ with k1 = 0.05 h/Mpc, k2 =0.07 h/Mpc

ES, Crocce & Desjacques (2011)
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The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).
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Generic configurations (I), Bδδh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 7: Generic configurations (I) of the cross-bispectrum, Bδδh(k1, k2, θ), with k1 = 0.07hMpc−1, k2 =
0.08hMpc−1. See text for explanation.
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B(k1, k2, θ) as a function of θ with k1 = 0.07 h/Mpc, k2 =0.08 h/Mpc
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The EPT expansion for the matter bispectrum is given by
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where B111 ≡ B0 is the initial bispectrum and
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Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
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123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
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2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).
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Bh(k1, k2, k3) = b31(fNL, k)B(k1, k2, k3)

+b1(fNL, k1)b1(fNL, k2)b2(fNL, k1, k2)P (k1)P (k2) + cyc.
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Generic configurations (II), Bh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 12: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.

26

Generic configurations (II), Bh(k1, k2, θ), k1 = 0.05hMpc−1, k2 = 0.07hMpc−1
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FIG. 12: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.

B(k1, k2, θ) as a function of θ with k1 = 0.05 h/Mpc, k2 =0.07 h/Mpc

The Halo Bispectrum: theory vs. simulations

7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

ES, Crocce & Desjacques (2011)



25

Generic configurations (I), Bh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 11: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.
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Generic configurations (I), Bh(k1, k2, θ), k1 = 0.07hMpc−1, k2 = 0.08hMpc−1
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FIG. 11: Equilateral configurations of the halo bispectrum, Bh(k, k, k), compared with the theoretical prediction
assuming the best fit values for the bias parameters b1 and b2.

Halo bispectrum: 

Bh(k1, k2, k3) = b31(fNL, k)B(k1, k2, k3)

+b1(fNL, k1)b1(fNL, k2)b2(fNL, k1, k2)P (k1)P (k2) + cyc.

B(k1, k2, θ) as a function of θ with k1 = 0.07 h/Mpc, k2 =0.08 h/Mpc

The Halo Bispectrum: theory vs. simulations

7

The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
each of which has fNL = 0,±100, were run with the N-body code gadget [8]. The same Gaussian random seed
field φ is employed in each set of runs so as to minimize the sampling variance. The initial particle distribution is
generated at redshift zi = 99 using the Zel’dovich approximation [9].
We study the distribution of FoF halos in two mass bins. The low-mass bin is defined by 8.8× 1012 h−1 M⊙ < M <

1.6× 1013 h−1 M⊙ while the high-mass bin is given by M > 1.6× 1013 h−1 M⊙. We consider the single output redshift
z = 0.5 (precisely z = 0.509).

ES, Crocce & Desjacques (2011)
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The EPT expansion for the matter bispectrum is given by

Bm = B111 +BI
112 +BI

122 +BII
122 +BI

113 +BII
113 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70 , f

2
NL), (61)

where B111 ≡ B0 is the initial bispectrum and

BI
112 = 2 F2(k1,k2) P0(k1) P0(k2) + 2 perm., (62)

is the other tree-level contribution, while the 1-loop corrections are given by

BI
122 = 2 P0(k1)

�
F2(k1,k3)

�
d3q F2(q,k3−q) B0(k3, q, |k3 − q|) + (k3 ↔ k2)

�
+ 2 perm.

= F2(k1,k2) [P0(k1) P12(k2) + P0(k2) P12(k1)] + 2 perm., (63)

BII
122 = 4

�
d3q F2(q,k2−q) F2(k1+q,k2−q) B0(k1, q, |k1+q|) P0(|k2−q|) + 2 perm., (64)

BI
113 = 3B0(k1, k2, k3)

�
d3q F3(k3,q,−q)P0(q) + 2 perm., (65)

BII
113 = 3P0(k1)

�
d3q F3(k1,q,k2−q)B0(k2, q, |k2−q|) + (k1 ↔ k2) + 2 perm., (66)

BI
222 = 8

�
d3qF2(−q,q+k1)F2(−q−k1,q−k2)F2(k2−q,q)P0(q)P0(|k1+q|)P0(|k2−q|), (67)

BI
123 = 6 P0(k1)

�
d3q F3(k1,k2−q,q) F2(k2−q,q)P0(|k2−q|) P0(q) + 5 perm., (68)

BII
123 = 6 P0(k1) P0(k2) F2(k1,k2)

�
d3q F3(k1,q,−q) P0(q) + 5 perm.

= F2(k1,k2) [P0(k1) P13(k2) + P0(k2) P13(k1)] + 2 perm., (69)

BI
114 = 12P0(k1)P0(k2)

�
d3q F4(q,−q,−k1,−k2)P0(q) + 2 perm.. (70)

Specifically, the one-loop contributions present because of non-Gaussian initial conditions are all the fifth-order terms
BI

122, B
II
122, B

I
113 and BII

113, which depend on the initial bispectrum B0. The Gaussian component to the matter
bispectrum is therefore given by

Bm,G = BI
112 +BI

222 +BI
123 +BII

123 +BI
114 +O(δ70), (71)

while the non-Gaussian correction is

∆Bm,G = B111 +BI
122 +BII

122 +BI
113 +BII

113 +O(δ70 , f
2
NL), (72)

IV. SIMULATIONS AND HALO SAMPLES

We employ large 10243 N-body simulations of the ΛCDM cosmology seeded with Gaussian and non-Gaussian initial
conditions [6]. The box size is 1600h−1 Mpc with a force resolution of 0.04 times the mean inter-particle distance.
The (dimensionless) power spectrum of the Gaussian part φ(x) of the Bardeen potential is the usual power-law
∆2

φ(k) ≡ k3Pφ(k)/(2π2) = Aφ(k/k0)ns−1. The non-Gaussianity is of the local form described above. We adopt the
standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to present epoch. We assume h = 0.7,
Ωm = 0.279, Ωb = 0.0462, ns = 0.96, and a normalization of the Gaussian curvature perturbations Aφ = 7.96× 10−10

at the pivot point k0 = 0.02Mpc−1, close to the best-fitting values inferred from CMB measurements [7]. This yields
a density fluctuations amplitude σ8 � 0.81 when the initial conditions are Gaussian. Eight sets of three simulations,
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FIG. 5: Reduced χ2 for the matter-matter-halo bispectrum fits. Thin lines correspond to the tree-level approxi-
mation for matter correlators. Thin and light (cyan and magenta) curves include the ∆b2,sd,b correction.

These configurations are chosen to given a fair assessment of the effects of non-Gaussianity on the halo
bispectrum which, as we will see, is not limited to squeezed configurations.

Figures 6, 7, 8 and 9 show, respectively, the four different subsets of triangles described above for the
matter-matter-halo bispectrum Bδδh(k1, k2; k3). Notice that the third variable k3 corresponds to the halo
density δh(k3).

As for the power spectrum plots, for each set of configurations we show the Gaussian component Bδδh,G

and the model residuals (upper two rows), the non-Gaussian correction ∆Bδδh,NG and the corresponding
model residuals (third and fourth row), the non-Gaussian to Gaussian ratio Bδδh,NG/Bδδh,G (fifth row)
and the O(f2

NL) component determined from the mean of the [Bδδh,NG(fNL = +100) +Bδδh,NG(fNL =

The Halo Bispectrum: theory vs. simulations

Constant for kmax < 0.07 h/Mpc
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FIG. 14: Best-fit bias parameters versus theoretical predictions. In all panels the continuous curve shows the
predictions assuming a Sheth-Tormen mass function with the original parameters and the non-Gaussian correc-
tion to the mass function with the form proposed by [60] while the dotted line assumes instead the mass function
measured from the simulations. The circles correspond to the best-fit bias parameters where the Gaussian linear
bias b10,G and its non-Gaussian, scale-independent correction ∆b10,NG are determined from power spectrum mea-
surements while only the Gaussian quadratic bias b20,G and its non-Gaussian correction ∆b20,NG are determined
from the bispectrum. The square data points correspond instead to the same bias parameters determined ex-
clusively from bispectrum measurements. Filled symbols are derived from halo correlators, empty symbols from
matter-halo cross-correlators. Data points are plotted at the mean mass value for the corresponding mass bin
and are slightly displaced for clarity when needed. Vertical thin gray lines correspond to the thresholds defining
the two mass bins.

spectrum measurements in simulations with Gaussian initial conditions while its correction ∆b10,NG is
obtained from the extra contribution to the power spectrum induced by non-Gaussianity. The quadratic
parameter b20,G is in turn given by fitting the bispectrum with Gaussian initial conditions and the
correction ∆b20,NG by the non-Gaussian effect on the bispectrum. The whole procedure is performed
independently on the matter-halo cross correlators and on the halo correlators (power spectrum and
bispectrum).

While probably being the most “predictive” procedure not involving the direct evaluation of the bias
parameters, this is by no means the only possible one. We did in fact consider alternative determinations
entirely based on bispectrum measurements. The outcome of such different procedures is shown in Fig. 14,
where it is also compared to the theoretical predictions of the peak-background split approach.

In the upper left panel of Fig. 14 the best-fit values of b10,G are shown, with circles denoting the value
obtained from the power spectrum measurements and squares those obtained from the bispectrum, after
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FIG. 15: One-σ uncertainty on the fNL parameter, marginalized over the Gaussian bias parameters, obtained

from the Fisher matrix analysis of the power spectrum (dotted curve), bispectrum (dashed curve) and combined

(continuous curve) for an ideal survey of 10h−3
Gpc

3
at redshift z = 1, assuming a fiducial values for the non-

Gaussian and bias parameters given by fNL = 10, b10,G = 2 and b20,G = 0.8. The left panel shows ∆fNL as a

function of the maximum wavenumber included, kmax, while the right panel assumes kmax = 0.1hMpc
−1

and

limits the smallest wavenumber included by kmin.

to provide a given galaxy number density of n̄g. This is equivalent to an Halo Occupation Distribution
assigning one galaxy per halo above the threshold. In addition, we assume that the scale-independent bias
corrections ∆bi are functions of the Gaussian parameters themselves, i.e. ∆bi(bi), obtained by varying the
galaxy number density. This assumption is partially justified by the strong correlation expected between
these parameters as we vary the characteristics of the galaxy population.

Notice that we account only for the variance of the galaxy bispectrum, given by

∆B2
g(k1, k2, k3) =

sB
8π2k1k2k3

Ptot(k1)Ptot(k2)Ptot(k3) , (53)

with Ptot(k) = [Pg(k) + 1/[(2π)3n̄g] is the total galaxy power spectrum, including shot noise. The
expression for the galaxy power spectrum is given by Eq.s (39) and (40) while for the galaxy bispectrum
by Eq.s (46) and (47) where the bias parameters are now to be interpreted as galaxy bias. For simplicity,
we evaluate all the matter correlators at linear and tree-level for the power spectrum and bispectrum,
respectively. In addition, the computation of the galaxy bispectrum variance is linearized with respect
to fNL.

The results of the Fisher analysis can be read off in Fig. 15, which shows the one-σ error on the
non-Gaussian parameter fNL obtained upon marginalizing over the two bias parameter. Errors are
plotted as a function of the maximum wavenumber kmax for an ideal survey of 10h−3 Gpc3 at redshift
z = 1. We consider a galaxy population characterized by number density n̄g = 10−3 h3 Mpc−3 and by the
Gaussian bias parameters b1 = 2 and b2 = 0.8. The dotted curve represents the error obtained from an
analysis of the galaxy power spectrum only, the dashed curve corresponds to the galaxy bispectrum only,
and the continuous curve is the constraint from a combined analysis of the galaxy power spectrum and
bispectrum. As expected from signal-to-noise considerations for the effect of primordial non-Gaussianity
on halo correlators (see Section V), the determination of fNL from power spectrum measurements does
not improve significantly as kmax increases beyond the largest scales accessible. However, due to the
increase in the number of triangles included in the analysis, the bispectrum provides a comparable error
∆fNL for relative small values of kmax, even before the mildly nonlinear regime. More interestingly, the
combined power spectrum and bispectrum analysis improves that based on the power spectrum alone
already at very large scales, even after the marginalization over the bias parameters. We can compare
these results with those of [52], where the sole effect of non-Gaussian initial conditions is on the matter
bispectrum and the non-Gaussian galaxy bias is not taken into account. We find a difference between
the two analysis of a factor slightly larger than three, essentially due to the effect of PNG on halo bias.

As we have seen, most of the signal in power spectrum measurements resides in the smallest wavenumber

A Fisher matrix analysis for Galaxy correlators 

The uncertainty on fNL (local) from Power Spectrum & Bispectrum (& both)

marginalized (b1, b2)
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FIG. 11: Comparison of the matter power spectrum in models with Gaussian and non-Gaussian initial density fluctuations at
redshifts z = 1.0 (left sub-fig.) and z = 0.0 (right sub-fig.). Top panels: Absolute power. Points with error bars show results for
the simulations and the colors green, red and blue denote the models fNL = {0,+100,−100}. The lines represent halo model
predictions: dash lines denote P1H; dot-dash lines denote P2H; dotted lines denote PExc

2H ; the solid line represents the total halo
model prediction including subtraction of the halo exclusion term. Bottom panels: ratio of the matter power spectra in the
fNL = +100 and −100 models with respect to the Gaussian (fNL = 0) results. Points and line styles are as above.

lation code DualTreeTwoPoint, which is based upon the
kD-tree data structure, and the code is parallelized using
MPI calls. Thus on averaging over the 12 simulations we
expect results that are accurate to 5%/

√
12− 1 ! 2%.

Figure 12 presents the ensemble average estimate of
the matter correlation function in the Gaussian models
over three decades in spatial scale at redshifts z = 1.0 and
z = 0.0, left and right panels respectively. The figure also
shows the halo model predictions appear in remarkably
good agreement with the simulation data. The exact
deviations are hard to quantify on the log-scale and so we
take the ratio of the theory and simulation measurements
with respect to the halofit model correlation function.

We now see that the halo model predictions are better
than 10% over the entire range of scales and redshifts con-
sidered. The predictions are somewhat worse at the 2–
to 1–Halo cross-over scale (i.e. r ∈ [2, 10]h−1Mpc), also
on the very largest of scales around the BAO feature and
on the smallest scales r ! 0.2 h−1Mpc. We emphasize
that none of the halo model parameters were tuned to fit
the clustering statistics directly.

In the figure we also show the result for the halo model
calculation if no exclusion correction is made, and we
see that predictions significantly overshoot the measure-
ments by factors of a few on small scales, especially at
low redshift. The figure also shows that the exclusion cor-
rection essentially kills the contribution from the 2-Halo
term to the correlation function on small scales. Further-
more this correction also kills some of the contribution
of the 1-Halo term to the correlation function on scales
larger than r ∼ 2 h−1Mpc.

E. Matter correlation function: PNG case

In Figure 13 we present the ensemble average estimate
of the matter correlation function in the models evolv-
ing from PNG initial conditions at redshifts z = 1.0 and
z = 0.0, left and right panels respectively. As for the
correlation function in the Gaussian case the halo model
predictions with exclusion provide a remarkably good de-
scription of the clustering. The differences are not clearly
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spatially exclusive—so each halo is like a small hard sphere); assuming that it scales like !(r)
is a gross overestimate. Using !hh(r|m1; m2) ≈ b(m1)b(m2)!lin(r), i.e., using the linear, rather than
the non-linear correlation function, even on the smallest scales, is a crude but convenient way of
accounting for this overestimate. Although the results of [258,223] allow one to account for this more
precisely, it turns out that great accuracy is not really needed since, on small scales, the correlation
function is determined almost entirely by the one-halo term anyway. Although almost all work to
date uses this approximation, it is important to bear in mind that it’s form is motivated primarily by
convenience. For example, if volume exclusion e!ects are only important on very small scales, then
setting !(r) ≈ !1-loop(r) rather than !lin(r), i.e., using the one-loop perturbation theory approximation
rather than the simpler linear theory estimate, may provide a better approximation.
Because the model correlation function involves convolutions, it is much easier to work in Fourier

space: the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Thus, we can write the dark matter power spectrum as

P(k) = P1h(k) + P2h(k); where

P1h(k) =
∫

dmn(m)
(

m
#"

)2

|u(k|m)|2

P2h(k) =
∫

dm1n(m1)
(

m1
#"

)

u(k|m1)
∫

dm2n(m2)
(

m2
#"

)

u(k|m2)Phh(k|m1; m2) : (88)

Here, u(k|m) is the Fourier transform of the dark matter distribution within a halo of mass m
(Eq. (80)) and Phh(k|m1; m2) represents the power spectrum of halos of mass m1 and m2. Following
the discussion of the halo–halo correlation function (Eq. (87)), we approximate this by

Phh(k|m1; m2) ≈
2
∏

i=1

bi(mi)Plin(k) (89)

bearing in mind that the one-loop perturbation theory estimate may be more accurate than Plin(k).

4.2. Higher-order correlations

Expressions for the higher order correlations may be derived similarly. However, they involve
multiple convolutions of halo pro"les. This is why it is much easier to work in Fourier space:
the convolutions of the real-space density pro"les become simple multiplications of the Fourier
transforms of the halo pro"les. Similarly, the three-point and four-point correlations include terms
which describe the three and four point halo power spectra. The bi- and tri-spectra of the halos are

Bhhh(k1; k2; k3;m1; m2; m3) =
3
∏

i=1

bi(mi)
[

Blin(k1; k2; k3) +
b2(m3)
b1(m3)

Plin(k1)Plin(k2)
]

;

Thhhh(k1; k2; k3; k4;m1; m2; m3; m4) =
4
∏

i=1

bi(mi)

[

T lin(k1; k2; k3; k4)

+
b2(m4)
b1(m4)

Plin(k1)Plin(k2)Plin(k3)

]

: (90)

In Perturbation Theory ...

In the Halo Model:



The matter bispectrum and PNG: small scales
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The matter bispectrum and PNG: small scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

ES (2009)
ES, Crocce & Desjacques (2010) 
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.
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The matter bispectrum and PNG: even smaller scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

Beyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 
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Figure 2: Squeezed configurations of the matter bispectrum, B(k1, k, k), with k1 � k2 = k3 ≡ k, at
redshift z = 0 (left panels) and z = 1 (right panels). See text for explanation. [Fil: can we show a bit
more what happens below 1 in the lower plots?]
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There is a significant  effect of NG initial 
conditions of about 5-15% on all triangles, at 
small scales and at late times for fNL = 100



The matter bispectrum and PNG: even smaller scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

Beyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 
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Figure 3: Non-Gaussian corrections to individual ingredients of the Halo Model for the matter power

spectrum (left panel) and for the squeezed configurations of the matter bispectrum (right panel). In

addition to the full Halo Model (continuous curve) we consider the results of allowing for a non-Gaussian

correction only in each one of the ingredients of the Halo Model: the mass function (short-dashed curve),
the halo density profile (dot-dashed), the linear halo bias (dotted) and, for the bispectrum in particular,

the quadratic halo bias (medium-dashed) and the initial component to the tree-level bispectrum (long-
dashed). The correction to the quadratic bias (upper right panel) is shown with the sign changed. All

panels share the same label.

and Eq. (37), together with Eq. (50), the Halo Model bispectrum contributions become, at leading order

in k1/k � 1,

B1h(k1, k, k) =
1

ρ̄
�[m]
2 (k, fNL) , (51)

B2h(k1, k, k) = �[b1]2 (k, fNL)PL(k1) , (52)

B3h(k1, k, k) = 2

�
13

14
+

�
4

7
− 1

2

d lnPL

d ln k

�
(k̂1 · k̂)2 +

�[b2]1 (k, fNL)

�[b1]1 (k, fNL)
+

2 fNL

M(k1, z)

�
PL(k1)P2h(k) . (53)

with
d lnPL
d ln k evaluated at k. The functions �[F ]

i in these expressions are defined as

�[F ]
i (k, fNL) ≡

1

ρ̄ i

�
dmnNG(m, z, fNL) ρ̂

i
(m, z, k, fNL)F (m, z, fNL) , (54)

where F (m, z, fNL) represents a generic function of mass and redshift. Thus, these functions are like an

“average” of the function F , weighted by the mass function and the ith power of the Fourier transform
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The matter bispectrum and PNG: even smaller scales 

Beyond PT:  The Halo Model

Figueroa, ES, Riotto & Vernizzi (2012) 

Figure 7: Relative effect of primordial non-Gaussianity shown in terms of the quantity

BNG(k1, k2, k3)/BG(k1, k2, k3) at z = 1 plotted as a function of the ratios k3/k1 and k2/k1 assuming

a constant k1 = 3hMpc
−1

. The function takes values on a triangle (represented by the shaded area on

the bottom surface) where the lower corner corresponds to flattened triangles (k1 = 2k2 = 2k3), to top

right corner to equilateral configurations (k1 = k2 = k3) and the top left corner to squeezed configurations

(k2 � k1 = k3). The left panel shows the ratio BNG/BG computed in the three-level approximation in

PT. The right panel shows instead the full HM calculation.

However, since the ratio BNG/BG agrees very well with the one measured in the numerically simulations,

this inaccuracy is likely to be traced in the Halo Model itself, more than on the inclusion of non-Gaussian

corrections.

In order to provide a more complete description of the impact of primordial non-Gaussianity on all

triangular configurations, in Fig. 7 we show the relative effect BNG(k1, k2, k3)/BG(k1, k2, k3) at z = 1

as a function of the ratios k3/k1 and k2/k1 assuming a constant k1 = 3hMpc
−1

. In order to avoid

redundancy among equivalent configurations, the quantity plotted takes values on a triangle (represented

by the shaded area on the bottom surface) where the lower corner corresponds to flattened triangles

(k1 = 2k2 = 2k3), the top right corner to equilateral configurations (k1 = k2 = k3) and the top left

corner to squeezed configurations (k2 � k1 = k3). The left panel shows the ratio BNG/BG computed in

the tree-level approximation in PT. Even though perturbation theory is not applicable at these scales,

this plot nevertheless provides an estimate of the contribution of the linear bispectrum B0 to the overall

effect. Clearly, a large effect is present only in the squeezed limit. The right panel shows instead the

full HM calculation. In this case we notice how, in addition to a 20% effect in the squeezed limit, all
triangles of essentially any shape receive a correction of the order of about 7-8%. We also notice, as

in the previous plots, a local maximum effect corresponding to wavenumbers of order 1hMpc
−1

and to

flattened configurations.
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 fNL = 0

16 I. Kayo, M. Takada & B. Jain

Figure 10. Left panel: Cumulative signal-to-noise ratios (S/N ) for the power spectrum (P ), the bispectrum (B) and the joint measurement (P + B) for a
survey area of 25 deg2 and source redshift zs = 1. It is shown as a function of the maximum multipole lmax, where the power spectrum and/or bispectrum
information are included over lmin ! l ! lmax (see Eqs. 27, 28 and 31). Note that we set lmin = 72 and did not include the shape noise contamination here
– it is shown in the next figure. The circle, triangle and square symbols are the simulation results, computed from the 1000 realizations, for P , B and P + B
measurements, respectively. The short-dashed, long-dashed and solid curves are the halo model predictions. Adding the bispectrum to the power spectrum
does increase the S/N amplitude, e.g. by about 50% at lmax ! 103 . For comparison, the thin dotted curve shows the S/N for the power spectrum for
the Gaussian field, which the primordial density field should have contained. Right panel: The thinner curves are added to the left panel to show the model
predictions without the HSV contribution. For l > 1000, the HSV contribution lowers the S/N significantly.

the non-Gaussian errors, the total S/N is not simply a sum of the S/N ’s of the power spectra and the bispectra due to the cross-covariance,
because the two spectra are not independent. To study this, we first define the data vector for the joint measurement as

D =
{

P1, P2, · · · , Pnb
, B1, B2, · · · , Bitriang,max

}

. (29)

The covariance matrix for the data vectorD is given as

C
P+B =

(

CP CPB

CPB CB

)

, (30)

where theCPB is the cross-covariance between the power spectrum and the bispectrum. Then, the total S/N for the combined measurement
is similarly defined as
(

S
N

)2

P+B
=

∑

i,j!lmax

Di

[

C
P+B

]−1

ij
Dj . (31)

Fig. 10 shows the expected S/N ’s for measurements of the power spectra and the bispectra for a survey area of 25 square degrees (i.e.
the area of the ray-tracing simulation), as a function of the maximum multipole lmax up to which the power spectrum and/or bispectrum
information are included. Note that the minimum multipole is fixed to lmin = 72, and we did not include the shot noise contamination to the
error covariance matrices, so the results solely correspond to the cosmological information contents. The circle, triangle and square symbols
are the simulation results for the S/N ’s of the power spectra, the bispectra and the joint measurements, respectively, which are computed
using the 1000 realizations. The thick short-dashed, long-dashed and solid curves are the halo model predictions. First of all, the lensing
bispectra add a new information content to the power spectrum measurement. To be more quantitative, adding the bispectrum measurement
increases the S/N values by about 50% for lmax ! 103 compared to the power spectrum measurement alone, where lmax ! 103 or a few
103 are the target maximum multipoles for the upcoming weak lens surveys. This improvement is equivalent to about 2.3 larger survey area
for the power spectrum measurement alone; that is, the same data sets can be used to obtain the additional information, if the bispectrum
measurement is combined with the power spectrum measurement. Secondly, the halo model predictions are in nice agreement with the
simulation results. Note that the total S/N for the joint measurement (P + B) is close to the linear sum of the S/N values ((S/N)P
and (S/N)B), not the sum of their squared values (S/N)2, due to the significant cross-covariance between P and B (see Appendix C
in Takada & Bridle 2007, for the similar discussion). If ignoring the cross-covariance, adding the bispectrum measurement does not much
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Information beyond the two-point function: how much?

Comparing the cumulative signal-to-noise:

[ES & Scoccimarro (2005)]

In the case of SDSS ...

There is as much signal-to-noise
in the bispectrum
as in the power spectrum
at mildly non-linear scales!

... even when the survey geometry and
full, non-linear covariance are taken into
account!

Emiliano Sefusatti Nonlinearities & Non-Gaussianities in the Large-Scale Structure

ES & Scoccimarro (2005) 

galaxies weak lensing



Conclusions

• Quasi-Single Field inflation provides very interesting 
predictions for scale-dependent bias: given a detection of fNL by Planck 
we could possibly learn something on the structure of the field-space in the 
early Universe.

• We do have a good understanding of the multiple effects of PNG on the 
galaxy bispectrum at large scales  (with room for improvement!)

• The impact of NG on nonlinear evolution of structure is significant, 
particularly in terms of the matter bispectrum: can this be detected in 
weak lensing surveys?

• A complete analysis of the large-scale structure (e.g. galaxy power 
spectrum and bispectrum) can do better than power spectrum alone: 
smaller uncertainties on NG parameters for virtually any model of non-
Gaussianity 


