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Excursion sets Original framework...

Nonlinear gravity
Separating dynamics from statistics

Dark matter halos are fully nonlinear collapsed gravitational systems.

But at first approximation, they form when a “dense enough” clump falls into itself due to gravity.
Calling the collapse a spherical cow allows dynamics to be separated from statistics of initial
conditions.
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Excursion sets Original framework...

Nonlinear gravity
Separating dynamics from statistics

Dark matter halos are fully nonlinear collapsed gravitational systems.

But at first approximation, they form when a “dense enough” clump falls into itself due to gravity.
Calling the collapse a spherical cow allows dynamics to be separated from statistics of initial
conditions.

Also, language simplifies in the right variables: use smoothed, linearly extrapolated density
contrast

δR =

∫

d3k

(2π)3
W (kR)δ(~k) ; s ≡ σ2

R = 〈 δ2
R 〉 =

∫

d ln k ∆2(k)W (kR)2

where ∆2(k) = k3P(k)/2π2. E.g.: W (y) = e−y2/2 or W (y) = (3/y) j1(y).
Also, frequently use ν ≡ δc/

√
s; δc ≃ 1.686.
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Nonlinear gravity
Separating dynamics from statistics

Dark matter halos are fully nonlinear collapsed gravitational systems.

But at first approximation, they form when a “dense enough” clump falls into itself due to gravity.
Calling the collapse a spherical cow allows dynamics to be separated from statistics of initial
conditions.

Also, language simplifies in the right variables: use smoothed, linearly extrapolated density
contrast

δR =

∫

d3k

(2π)3
W (kR)δ(~k) ; s ≡ σ2

R = 〈 δ2
R 〉 =

∫

d ln k ∆2(k)W (kR)2

where ∆2(k) = k3P(k)/2π2. E.g.: W (y) = e−y2/2 or W (y) = (3/y) j1(y).
Also, frequently use ν ≡ δc/

√
s; δc ≃ 1.686.

Approximation of dynamics (Press & Schechter 74) :

If δR exceeds a critical threshold δc , then a collapsed object of mass m ∝ R3 forms today. [So σ2
R

is a label for mass m.]
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Excursion sets Original framework...

Excursion set ansatz
“Pick a card, any card”.

Original ansatz (Bond et al. 91):

Pick a location in space at random.

Construct sequence of values δR ∼∑W (kR)δ(~k) as R is decreased from a large value.
This is a random walk.

Some of these values will lie above δc . Corresponding smoothing scales are candidate
halo masses.

R
-1

δc
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To avoid overcounting, look for first crossing for a given walk. [All other crossings
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Excursion sets Original framework...

Excursion set ansatz
“Pick a card, any card”.

Original ansatz (Bond et al. 91):

Pick a location in space at random.

Construct sequence of values δR ∼∑W (kR)δ(~k) as R is decreased from a large value.
This is a random walk.

Some of these values will lie above δc . Corresponding smoothing scales are candidate
halo masses.

To avoid overcounting, look for first crossing for a given walk. [All other crossings
correspond to smaller scales, which will be eaten up by the largest – “cloud-in-cloud”.]

Excursion set ansatz :

Distribution of first-crossing scales f (s)ds in initial conditions, gives mass fraction f (m)dm in
collapsed objects of mass m.
f (m) then gives number density of m-halos or “halo mass function” n(m) through simple
transformation.

Excursion set approach also makes predictions for halo bias, merger rates, etc.
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Excursion sets ... and why it’s wrong

Empirical problem
Random walks confront halos

Well-known order-of-magnitude discrepancy

0.001

0.01

0.1

0 0.5 1

y
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(y
)

log10(y=ν2
)

z = 0

TopHat filtering

ST (q = 0.707)

MS

MS (ν → ν√0.707)

AP & Sheth 12
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Excursion sets ... and why it’s wrong

Theoretical problem
“Any” card?!

Picking a location at random cannot be correct, because halos form at special locations (e.g.,
near peaks in the initial density).

The effect of this inaccurate choice can be easily understood (Sheth, Mo & Tormen 01; Sheth 11):
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Theoretical problem
“Any” card?!

Picking a location at random cannot be correct, because halos form at special locations (e.g.,
near peaks in the initial density).

The effect of this inaccurate choice can be easily understood (Sheth, Mo & Tormen 01; Sheth 11):
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(R1,x) <

(R1,0) =

(R2,x) = δ

δ

δ

δ δ

δ

c

c

c

I.e., masses will be underestimated, and hence also the tail of the mass function.
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Excursion sets Interlude: correlated steps

First crossing distributions
Analytical approximations

Analytical solutions in closed form are known for the sharp-k filter, for barriers that are constant
(Bond et al 91) or linear in s = σ2

R (e.g., Sheth 98). [This case is tractable since steps in δR ∼
∑

W (kR)δ(~k)

are uncorrelated.]

For other filters and barrier shapes, approximations are needed, mainly because the steps in the
walks are correlated (Peacock & Heavens 90; Maggiore & Riotto 10; AP, Lam & Sheth 12; Musso
& Sheth 12).
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First crossing distributions
Analytical approximations

Analytical solutions in closed form are known for the sharp-k filter, for barriers that are constant
(Bond et al 91) or linear in s = σ2

R (e.g., Sheth 98). [This case is tractable since steps in δR ∼
∑

W (kR)δ(~k)

are uncorrelated.]

For other filters and barrier shapes, approximations are needed, mainly because the steps in the
walks are correlated (Peacock & Heavens 90; Maggiore & Riotto 10; AP, Lam & Sheth 12; Musso
& Sheth 12).

The most accurate is due to Musso & Sheth 12. For a constant barrier:

fMS(s) =
∫ ∞

0
dv v p(δc , v) ,

where v ≡ dδ/ds and p(δ, v) is a bivariate Gaussian with zero mean and covariance matrix that
depends on choice of filter and power spectrum P(k).

Intuitively, because walks with correlated steps are smooth, “first crossing of δc ” ≈ “crossing with
positive slope”.
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Excursion sets Interlude: correlated steps

First crossing distributions
Analytical approximations

Analytical solutions in closed form are known for the sharp-k filter, for barriers that are constant
(Bond et al 91) or linear in s = σ2

R (e.g., Sheth 98). [This case is tractable since steps in δR ∼
∑

W (kR)δ(~k)

are uncorrelated.]

For other filters and barrier shapes, approximations are needed, mainly because the steps in the
walks are correlated (Peacock & Heavens 90; Maggiore & Riotto 10; AP, Lam & Sheth 12; Musso
& Sheth 12).

The most accurate is due to Musso & Sheth 12. For a constant barrier:

fMS(s) =
∫ ∞

0
dv v p(δc , v) ,

where v ≡ dδ/ds and p(δ, v) is a bivariate Gaussian with zero mean and covariance matrix that
depends on choice of filter and power spectrum P(k).

Intuitively, because walks with correlated steps are smooth, “first crossing of δc ” ≈ “crossing with
positive slope”.

Integral is analytical. Generalisation to moving barriers is straightforward: δc → B(s) and
∫∞

0 dv v . . . →
∫∞

B′ dv(v − B′) . . .
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Excursion sets Interlude: correlated steps

Random walks
First crossing distributions: Analytical approximations

Musso & Sheth 12
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Modifying the framework Peaks theory: counting the correct walks

Halos and peaks

To good approximation, massive halo center-of-mass ≈ density peak in initial conditions (Ludlow
& Porciani 11). So we’d like to only count peaks.

BBKS 86 showed how to do this: basically, constrain allowed values of first derivative ~∇δ (= 0)
and curvature ∇2δ (< 0).
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Modifying the framework Peaks theory: counting the correct walks

Cropping the ensemble of walks
The Appel & Jones distribution

Rewriting MS12 (i.e., all-walks distribution) to standardise the notation:

define x ≡ 2γ
√

sv , γ2 ≡ 〈 δv 〉2/(〈 δ2 〉〈 v2 〉) = 〈 x ν 〉2

denote Normal distribution pG(x − µ; Σ2)

fMS(ν) =
e−ν2/2
√

2π

1

γν

∫ ∞

0
dx x pG(x − γν; 1 − γ2)
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Cropping the ensemble of walks
The Appel & Jones distribution

Rewriting MS12 (i.e., all-walks distribution) to standardise the notation:

define x ≡ 2γ
√

sv , γ2 ≡ 〈 δv 〉2/(〈 δ2 〉〈 v2 〉) = 〈 x ν 〉2

denote Normal distribution pG(x − µ; Σ2)

fMS(ν) =
e−ν2/2
√

2π

1

γν

∫ ∞

0
dx x pG(x − γν; 1 − γ2)

A technical simplification when Gaussian filtering: x = −∇2δ/
√

〈 (∇2δ)2 〉 = peak curvature.
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Cropping the ensemble of walks
The Appel & Jones distribution

Rewriting MS12 (i.e., all-walks distribution) to standardise the notation:

define x ≡ 2γ
√

sv , γ2 ≡ 〈 δv 〉2/(〈 δ2 〉〈 v2 〉) = 〈 x ν 〉2

denote Normal distribution pG(x − µ; Σ2)

fMS(ν) =
e−ν2/2
√

2π

1

γν

∫ ∞

0
dx x pG(x − γν; 1 − γ2)

A technical simplification when Gaussian filtering: x = −∇2δ/
√

〈 (∇2δ)2 〉 = peak curvature.

In this case, counting peaks amounts to introducing F (x)(V/V∗) under the integral.

V/V∗ = ratio of peak Lagrangian volume V (= m/ρ̄) to characteristic volume V∗ (which depends

on filter and P(k)).

F (x) = peak curvature function ( BBKS eqn A15 ... bunch of error functions and Gaussians).
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Modifying the framework Peaks theory: counting the correct walks

Cropping the ensemble of walks
The Appel & Jones distribution

Rewriting MS12 (i.e., all-walks distribution) to standardise the notation:

define x ≡ 2γ
√

sv , γ2 ≡ 〈 δv 〉2/(〈 δ2 〉〈 v2 〉) = 〈 x ν 〉2

denote Normal distribution pG(x − µ; Σ2)

fMS(ν) =
e−ν2/2
√

2π

1

γν

∫ ∞

0
dx x pG(x − γν; 1 − γ2)

A technical simplification when Gaussian filtering: x = −∇2δ/
√

〈 (∇2δ)2 〉 = peak curvature.

In this case, counting peaks amounts to introducing F (x)(V/V∗) under the integral.

V/V∗ = ratio of peak Lagrangian volume V (= m/ρ̄) to characteristic volume V∗ (which depends

on filter and P(k)).

F (x) = peak curvature function ( BBKS eqn A15 ... bunch of error functions and Gaussians).

Result: rederivation of Appel & Jones 90 distribution

fAJ(ν) =
e−ν2/2
√

2π

(

V

V∗

)

1

γν

∫ ∞

0
dx x F (x)pG(x − γν; 1 − γ2)
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Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

A. Paranjape (ICTP) Excursion set peaks CERN, Sep 2012 15 / 34



Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

BBKS peaks number density defined on a single smoothing scale.
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Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

BBKS peaks number density defined on a single smoothing scale.

So “peak-in-peak” problem not solved: critical peak on one scale can also be critical peak
on larger scale.
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Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

BBKS peaks number density defined on a single smoothing scale.

So “peak-in-peak” problem not solved: critical peak on one scale can also be critical peak
on larger scale.

Musso-Sheth prescription shows how to solve this:
−→ Halo of given mass = region that is a peak of critical height on scale of interest, but
not on any larger scale.
−→ I.e., solve first crossing distribution for peaks.
−→ Correlated steps =⇒ “any larger scale” ≈ “next larger scale”.
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Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

BBKS peaks number density defined on a single smoothing scale.

So “peak-in-peak” problem not solved: critical peak on one scale can also be critical peak
on larger scale.

Musso-Sheth prescription shows how to solve this:
−→ Halo of given mass = region that is a peak of critical height on scale of interest, but
not on any larger scale.
−→ I.e., solve first crossing distribution for peaks.
−→ Correlated steps =⇒ “any larger scale” ≈ “next larger scale”.

Implementing this: With NBBKS(ν, x) = (1/V∗)
(

e−ν2/2/
√

2π
)

F (x)pG(x − γν; 1 − γ2),

NBBKS(ν)∆ν =

∫ ∞

0
dx ∆νNBBKS(ν, x) =

∫ ∞

0
dx
∫ δc+∆ν

√
s

δc

dδ√
s
NBBKS(δ/

√
s, x) ,
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Modifying the framework Peaks theory: counting the correct walks

Excursion set peaks
Re-interpreting Appel & Jones 90

Alternate point of view (with same result):

BBKS peaks number density defined on a single smoothing scale.

So “peak-in-peak” problem not solved: critical peak on one scale can also be critical peak
on larger scale.

Musso-Sheth prescription shows how to solve this:
−→ Halo of given mass = region that is a peak of critical height on scale of interest, but
not on any larger scale.
−→ I.e., solve first crossing distribution for peaks.
−→ Correlated steps =⇒ “any larger scale” ≈ “next larger scale”.

Implementing this: With NBBKS(ν, x) = (1/V∗)
(

e−ν2/2/
√

2π
)

F (x)pG(x − γν; 1 − γ2),

NBBKS(ν)∆ν =

∫ ∞

0
dx ∆νNBBKS(ν, x) =

∫ ∞

0
dx
∫ δc+∆ν

√
s

δc

dδ√
s
NBBKS(δ/

√
s, x) ,

Using ∆ν
√

s → v ∆s =
(

x/2γ
√

s
)

∆s (Musso & Sheth 12 prescription), and f (ν) = V N (ν) gives

fESP(ν) =
e−ν2/2
√

2π

(

V

V∗

)

1

γν

∫ ∞

0
dx x F (x)pG(x − γν; 1 − γ2) = fAJ(ν)

A. Paranjape (ICTP) Excursion set peaks CERN, Sep 2012 15 / 34



Modifying the framework Peaks theory: counting the correct walks

Result
Enhancement at high masses (as expected)

At large ν: fESP(ν) →
e−ν2/2
√

2π
(ν3 − 3ν)

Vγ3

V∗
≈ fMS(ν)

Vγ3ν3

V∗
.
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MS (ν → ν√0.707)

AP & Sheth 12
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Modifying the framework Peaks theory: counting the correct walks

Changing barrier shapes
... again, is trivial

If δc → B(s),

NESP(ν) =
1

γν

∫ ∞

xmin

dx (x − 2γ
√

sB′)NBBKS(B/
√

s, x) ; xmin = max{0, 2γ
√

sB′}
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 f
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log10(y=ν2
)

z = 0

Gaussian filtering

B(s) = δc + α√s

ESP (α = 0.5)

ESP (α = 0)

MS  (α = 0.5)

MS  (α = 0)

AP & Sheth 12

To mixed filtering
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Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter
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Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter

Realistic filtering
... and technical complications

Halo mass is typically defined using sharp cuts in real space, e.g. using spherical TopHat. [This is

also the reason for not comparing ESP and N-body fits in previous plot, since s ↔ m relation depends on filter.]
So we’d like to switch from Gaussian to TopHat.
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also the reason for not comparing ESP and N-body fits in previous plot, since s ↔ m relation depends on filter.]
So we’d like to switch from Gaussian to TopHat.

Formally, not a problem.
One can even keep track of the difference between v = dδ/ds and ∇2δ.

Unfortunately, 〈 (∇2δ)2 〉 diverges for most P(k) of interest, including ΛCDM.
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Realistic filtering
... and technical complications

Halo mass is typically defined using sharp cuts in real space, e.g. using spherical TopHat. [This is

also the reason for not comparing ESP and N-body fits in previous plot, since s ↔ m relation depends on filter.]
So we’d like to switch from Gaussian to TopHat.

Formally, not a problem.
One can even keep track of the difference between v = dδ/ds and ∇2δ.

Unfortunately, 〈 (∇2δ)2 〉 diverges for most P(k) of interest, including ΛCDM.

There is a way out:

Use TopHat when computing ν = δc/
√

s, so masses come out right.

Use Gaussian when computing spatial derivatives.

Match scales by requiring 〈 δG|δTH 〉 = δTH, i.e., 〈 δGδTH 〉 = 〈 δ2
TH 〉 = s.
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Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter

Mixed ESP
Constant barrier B(s) = δc = 1.686
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Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter

More realistic barriers
Results from simulations

We know that barrier cannot be one constant number (Sheth, Mo & Tormen 01). Recent
simulations show mean trend ∼ √

s and ∼ LogNormal scatter ∝ √
s (Robertson et al. 09).

Robertson et al. 09

Consistent with B(s) = δc + β
√

s where β ∼ LogNormal with 〈β 〉 = 0.43;
√

Var(β) = 0.3.

A. Paranjape (ICTP) Excursion set peaks CERN, Sep 2012 21 / 34



Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter

Square-root barrier with scatter
What should we expect?

Square-root barrier without scatter will dramatically decrease large-mass counts
(we saw this here) .

Adding scatter will lead to an Eddington bias-like effect... preferential upscattering from low-mass
to high-mass. This will increase large-mass counts.
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Square-root barrier with scatter
What should we expect?

Square-root barrier without scatter will dramatically decrease large-mass counts
(we saw this here) .

Adding scatter will lead to an Eddington bias-like effect... preferential upscattering from low-mass
to high-mass. This will increase large-mass counts.

To see the full effect, we must calculate fESP(ν) =
∫

dβ p(β) fESP(ν|β) where

fESP(ν|β) = V NESP(ν|β)

=

(

V

V∗

)

e−(ν+β)2/2
√

2π

1

γν

∫ ∞

βγ
dx (x − βγ)F (x)pG(x − βγ − γν; 1 − γ2) ,

and p(β) is LogNormal with mean 0.43 and std. deviation 0.3.
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Modifying the framework Comparison with simulations: Sqrt barrier with LN scatter

Square-root barrier with scatter
Result
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Lagrangian halo bias Real space Vs. Fourier space
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Lagrangian halo bias Real space Vs. Fourier space

General result
Linear Lagrangian bias

Suppose that δ0(k) = δ(k)W (kR0) and δh(k) = b1(k)δ(k)W (kR) and W (y) = e−y2/2.

We’d like to calculate cross-correlation bias in real space: b1 = 〈 δhδ0 〉/〈 δ2
0 〉.
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Suppose that δ0(k) = δ(k)W (kR0) and δh(k) = b1(k)δ(k)W (kR) and W (y) = e−y2/2.

We’d like to calculate cross-correlation bias in real space: b1 = 〈 δhδ0 〉/〈 δ2
0 〉.

Suppose in k -space: b1(k) = b10 = constant

Then in real space : b1 = (S×/S0)b10; [S× =
∫

d ln k∆2(k)W (kR)W (kR0)]

(AP & Sheth 12, arXiv:1105.2261)
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General result
Linear Lagrangian bias

Suppose that δ0(k) = δ(k)W (kR0) and δh(k) = b1(k)δ(k)W (kR) and W (y) = e−y2/2.

We’d like to calculate cross-correlation bias in real space: b1 = 〈 δhδ0 〉/〈 δ2
0 〉.

Suppose in k -space: b1(k) = b10 = constant

Then in real space : b1 = (S×/S0)b10; [S× =
∫

d ln k∆2(k)W (kR)W (kR0)]

(AP & Sheth 12, arXiv:1105.2261)

Suppose in k -space: b1(k) = b10 + (k2s/σ2
1)b11; [σ2

1 =
∫

d ln k∆2(k)k2W (kR)2 ]

Then in real space : b1 = (S×/S0)[b10 + ǫ×b11] ; ǫ× = 2d ln S×/d ln s
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Lagrangian halo bias Real space Vs. Fourier space

General result
Linear Lagrangian bias

Suppose that δ0(k) = δ(k)W (kR0) and δh(k) = b1(k)δ(k)W (kR) and W (y) = e−y2/2.

We’d like to calculate cross-correlation bias in real space: b1 = 〈 δhδ0 〉/〈 δ2
0 〉.

Suppose in k -space: b1(k) = b10 = constant

Then in real space : b1 = (S×/S0)b10; [S× =
∫

d ln k∆2(k)W (kR)W (kR0)]

(AP & Sheth 12, arXiv:1105.2261)

Suppose in k -space: b1(k) = b10 + (k2s/σ2
1)b11; [σ2

1 =
∫

d ln k∆2(k)k2W (kR)2 ]

Then in real space : b1 = (S×/S0)[b10 + ǫ×b11] ; ǫ× = 2d ln S×/d ln s

Excursion sets analysis naturally gives this form for the linear bias. (Musso, AP & Sheth 12)
As a corollary, so does ESP. (AP & Sheth 12)

[These arguments generalise in a very simple way to include scale dependence in all higher order bn , but that’s a separate talk!]
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Lagrangian halo bias Real space Vs. Fourier space

Linear Lagrangian bias
For ESP + square-root barrier with scatter...

... in full glory

δcb1 =

(

S×

S0

)

∫

dβ p(β)B1,ESP(ν, ǫ×|β)
∫

dβ p(β)fESP(ν|β)
,

where

B1,ESP(ν, ǫ×|β) ≡
(

V

V∗

)

e−(ν+β)2/2
√

2π

× 1

γν

∫ ∞

xmin

dx (x − βγ)F (x)pG(x − βγ − γν; 1 − γ2)

×
[

ν(ν + β)− (1 − ǫ×)
γν

1 − γ2
(x − βγ − γν)

]

,
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Lagrangian halo bias Comparison with simulations
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Lagrangian halo bias Comparison with simulations

Comparing to N-body fits
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Lagrangian halo bias Comparison with simulations

Comparing to Pinocchio
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Summary

Summary

Excursion set ansatz can’t be right because halos form in special places.

Excursion set ansatz can be modified to only count walks centered on density peaks.

Equivalently, peaks theory can be modified to account for “peak-in-peak” problem.

Resulting mass function and bias (at large masses) agree well with results of N-body
simulations.

Similar ideas should apply to voids too.

Would be nice to have a physical model for p(β).
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Summary

Summary

Excursion set ansatz can’t be right because halos form in special places.

Excursion set ansatz can be modified to only count walks centered on density peaks.

Equivalently, peaks theory can be modified to account for “peak-in-peak” problem.

Resulting mass function and bias (at large masses) agree well with results of N-body
simulations.

Similar ideas should apply to voids too.

Would be nice to have a physical model for p(β).

Thank you.
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Peaks curvature function
BBKS eqn A15

F (x) =
1

2

(

x3 − 3x
)

{

erf

(

x

√

5

2

)

+ erf

(

x

√

5

8

)}

+

√

2

5π

[

(

31x2

4
+

8

5

)

e−5x2/8

+

(

x2

2
− 8

5

)

e−5x2/2
]

Back

A. Paranjape (ICTP) Excursion set peaks CERN, Sep 2012 31 / 34



Square root barrier with scatter
Comparing all-walks result
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Comparing to N-body fits and Pinocchio
Seeing k-dependence in real space
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Pinocchio mass function
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