

http://icc.ub.edu/~jimenez





Institut de Ciències del Cosmos





# Extremely successful model





(DMR)COBE

CMB

380000 yr
(a posteriori information)

# Avalanche of data







# Smoothing to retain only large scales loses a great deal of information

Credit: Ben Wandelt (IAP)

### The Halo Model



#### The Halo Model

$$\xi_{dm}(\mathbf{r}) \equiv <\delta(\mathbf{x})\delta(\mathbf{x}+\mathbf{r})>$$
  $\xi_{dm}(\mathbf{r})=\xi_{dm}^{1h}(\mathbf{r})+\xi_{dm}^{2h}(\mathbf{r})$ 

$$\xi_{dm}^{1h}(\mathbf{r},z) = \int dm \, \frac{m^2 \, n(m,z)}{\bar{\rho}_h^2(z)} \int_V d^3 \mathbf{x} \, u(\mathbf{x}|m) \, u(|\mathbf{x}+\mathbf{r}||m) 
\xi_{dm}^{2h}(\mathbf{r},z) = \int dm' \, \frac{m' \, n(m',z)}{\bar{\rho}_h(z)} \int dm'' \, \frac{m'' \, n(m'',z)}{\bar{\rho}_h(z)} \int_V d^3 \mathbf{x}' \, u(x'|m') \int_V d^3 \mathbf{x}'' \, u(x''|m'') \xi_{hh}(|\mathbf{x}'-\mathbf{x}''+\mathbf{r}|,z,m',m'')$$

And provides a formalism to also model the clustering of galaxies: just modify the density profile of the one halo term

$$u(r|m,c) \equiv rac{
ho(r|m,c)}{m}$$

$$1 = \int_0^{r_{vir}(m)} d^3 \mathbf{x} \, u(x|m,c)$$



Yet, (present) stellar mass determines where and how the galaxy formed and evolved



### SF as a function of environment (Mark Correlations)

Sheth, RJ, Panter, Heavens, ApJL, astro-ph/0604581



# Smoothing to retain only large scales loses a great deal of information

Credit: Ben Wandelt (IAP)

#### What we have learned from the most non-linear scales:



10-1

Mass, M  $(M_{\odot})$ 

Our findings from hydro-simulations are that a similar picture may apply to galaxies

Prieto, RJ, Marti, 2011 MNRAS





## Conclusions and Future Outlook

- Smoothing is a very poor way to treat the rich cosmological datasets, i.e. the whole sky
- We need to model the DM halos and galaxies
- Halo model of such is not god enough to obtain % cosmological parameters
- Fully non-linear turbulent flows maybe the clue to exploit scaling laws in non-linearity
- We should take advantage of non-linearity