The inadequacy of N-point functions to describe non-linear density fields

Julien Carron

ETH Zurich

September 6, 2012

M.C. Neyrinck, A. Szalay

ApJ, 738:86, 2011, 1105.4467

Phys. Rev. Lett. 108,071301, 2012, 1201.1000

ApJ, 738:86, 2012, with M.C. Neyrinck, 1201.1444

Context

 Description of fields through N-point moments and statistical inference from these moments:

$$\langle \rho(\mathbf{x}_1) \cdots \rho(\mathbf{x}_N) \rangle$$
.

How useful are they? How much information do they contain?

- \bullet Non-linear matter density or convergence field \approx lognormal.
- But the lognormal one-point pdf is known to be moment-indeterminate (Coles and Jones 91, Stieltjes 1894!).

Context

For

$$\rho = (\rho(\mathbf{x}_1), \cdots, \rho(\mathbf{x}_d)),$$

define

$$p(\rho) = p^{LN}(\rho) \left[1 + \epsilon \sin \left(\pi \boldsymbol{\omega} \cdot \boldsymbol{\xi}_{\ln \rho}^{-1} \left(\ln \rho - \bar{\ln \rho} \right) \right) \right]$$

 ω any vector of integer, and $|\epsilon| <$ 1.

All these measures have identical N-point moments

$$m_{\mathbf{n}} = \langle \rho(\mathbf{x}_1)^{n_1} \cdots \rho(\mathbf{x}_d)^{n_d} \rangle, \quad n_i = \cdots, -1, 0, 1, \cdots.$$

all all orders.

$$\textit{m}_{\mathbf{n}} = \exp\left(\frac{1}{2}\mathbf{n} \cdot \xi_{\ln \rho}\mathbf{n} - \frac{1}{2}\sigma_{\ln \rho}^2 \cdot \mathbf{n}\right)$$

Context

Tailed distributions :

$$\left\langle e^{c|x|} \right\rangle = \infty \quad \forall c > 0,$$

 For indeterminate measures: the characteristic function is not a moment generating function.

$$\left\langle e^{itx}\right\rangle
eq \sum_{n} i^{n}t^{n}m_{n}, \quad t\neq 0.$$

No way to express the density in terms of the *N*-point moments.

Outline and aims:

- Show and discuss how to understand the independent information content of the hierarchy of N-point moments.
- Present some exact results for lognormal fields. Compare these results to (Mark's) N-body simulations results on the statistical power of the spectrum of (log-)density field, and discuss them in this light.

Fisher information.

$$F_{\alpha\beta} := \left\langle \frac{\partial \ln p}{\partial \alpha} \frac{\partial \ln p}{\partial \beta} \right\rangle$$

To each weight function (density) p and with parameters α, β, \cdots is assigned a positive matrix (the covariance matrix of the score functions), in a way such that:

- it is additive for independent variables,
- it can only be reduced with data transformation
- it vanishes if the parameters do not impact p.
- ightarrow Meaningful *absolute* measure of information contained in p on the parameters .

Two matrix inequalities

Cramer - Rao bound (∼ statistical point of view):

$$\Sigma_{ij} \geq \sum_{\alpha\beta} \frac{\partial O_i}{\partial \alpha} \left[F^{-1} \right]_{\alpha\beta} \frac{\partial O_j}{\partial \beta}.$$

 Σ covariance matrix of the unbiased estimators $\hat{\mathbf{O}}$.

• Information inequality (\sim information theoretic point of view):

$$F_{\alpha\beta} \ge \sum_{i,j} \frac{\partial O_i}{\partial \alpha} \left[\Sigma^{-1} \right]_{ij} \frac{\partial O_j}{\partial \beta}.$$

The independent information content of the moments.

Moment of order n:

$$m_n := \langle x^n \rangle$$
, $\mu := m_1$, $\sigma^2 := m_2 - m_1^2$

Gaussian variables have a simple structure :

$$F_{\alpha\beta} = \underbrace{\frac{1}{\sigma^2} \left(\frac{\partial \mu}{\partial \alpha} \right) \left(\frac{\partial \mu}{\partial \beta} \right)}_{[F_1]_{\alpha\beta}} + \underbrace{\frac{1}{2} \left(\frac{\partial \ln \sigma^2}{\partial \alpha} \right) \left(\frac{\partial \ln \sigma^2}{\partial \beta} \right)}_{[F_2]_{\alpha\beta}}.$$

No independent information in higher order statistics, $F_n = 0$ n > 2

Q:

What is the independent information content F_n of m_n for any p(x)?

The independent information content of the moments.

Approximate the score function with the orthogonal polynomials $P_n(x)$

$$s_n(\alpha) := \langle \partial_\alpha \ln p \, P_n(x) \rangle$$
,

where

$$\langle P_n(x)P_m(x)\rangle = \delta_{mn}.$$

(E.g. use Gram-Schmidt on $1, x, x^2, \cdots$).

A:

The independent information content of m_n is $s_n(\alpha)s_n(\beta)$.

$$[F_n]_{\alpha\beta} := s_n(\alpha)s_n(\beta)$$

 $F_{\leq N} := \sum_{n=0}^N F_n.$

Properties of the expansion.

With

$$s_n(\alpha) = \langle \partial_\alpha \ln p \, P_n(x) \rangle = \sum_{k=0}^n C_{nk} \frac{\partial m_k}{\partial \alpha},$$

the series

$$\sum_{n=1}^{N} s_n(\alpha) P_n(x) =: s_{\leq N}(x, \alpha) \approx \partial_{\alpha} \ln p(x, \alpha),$$

gives the best approximation of the score function through polynomials, in the least squares sense.

• For any N we recover the RHS of the information inequality:

$$\begin{split} \left[\boldsymbol{F}_{\leq N} \right]_{\alpha\beta} &= \sum_{n=1}^{N} \boldsymbol{s}_{n}(\alpha) \boldsymbol{s}_{n}(\beta) = \sum_{i,j=1}^{N} \frac{\partial \boldsymbol{m}_{i}}{\partial \alpha} \left[\boldsymbol{\Sigma}^{-1} \right]_{ij} \frac{\partial \boldsymbol{m}_{j}}{\partial \beta} \\ \boldsymbol{\Sigma}_{ij} &= \boldsymbol{m}_{i+j} - \boldsymbol{m}_{i} \boldsymbol{m}_{j}, \quad \boldsymbol{\Sigma}^{-1} = \boldsymbol{C}^{T} \boldsymbol{C} \end{split}$$

Properties of the expansion.

The mean squared residual

$$\langle (\partial_{\alpha} \ln p - s_{\leq N}(x, \alpha)) (\partial_{\beta} \ln p - s_{\leq N}(x, \beta)) \rangle = F_{\alpha\beta} - [F_{\leq N}]_{\alpha\beta}$$

are the bits of information absent from the set of moments m_1 to m_N .

If the residual goes to zero as $N \to \infty$, then all of the information is contained within the hierarchy of moments.

Completeness vs incompleteness of the information

 Score function is a polynomial (fields of max. entropy with constrained moments):

$$F_{\leq N} = F$$

Moment-determinate measures :

$$\lim_{N\to\infty} F_{\leq N} = F$$

(Polynomials form a complete basis set)

Moment-indeterminate measures :

$$\lim_{N\to\infty}F_{\leq N}\leq F$$

Criteria for uniqueness tightly linked to decay rate [Freud, 1971].
 E.g.

$$\langle e^{cx} \rangle < \infty$$
 for some $c > 0$,

guarantees determinacy and thus convergence to ${\it F}$. Holds for any number of variables.

An example

• Information on p itself, $\alpha, \beta = p(x), p(y)$: polynomials and Christoffel-Darboux kernel as information:

$$egin{aligned} oldsymbol{s}_n(lpha) &= P_n(oldsymbol{x}), \ \left[F_{\leq N}
ight]_{lphaeta} &= \sum_{n=0}^N P_n(oldsymbol{x}) P_n(oldsymbol{y}), \ F_{lphaeta} &= rac{\delta^D(oldsymbol{x}-oldsymbol{y})}{p(oldsymbol{x})}. \end{aligned}$$

• But $\lim_{N\to\infty} F_{\leq N}$ finite for indeterminate measures. Very consistent.

Another example

• Gamma (generalised χ^2) distribution

$$p(x,k) = \frac{1}{\Gamma(k)}x^{k-1}e^{-x}, \quad x > 0, k > 0$$

$$s_n^2(k) = \frac{1}{n} \frac{\Gamma(k)\Gamma(n)}{\Gamma(k+n)}, \quad \sum_{n=1}^{\infty} s_n^2(k) = \psi_1(k) = F_{kk} \quad \text{Trigamma function}$$

Lognormal family

• x lognormal $\leftrightarrow A := \ln x$ Gaussian. Two free parameters :

$$(\sigma_A, \mu_A)(\alpha) \leftrightarrow (\sigma, \mu)(\alpha)$$

In the following $\mu = 1$, $A = \ln(1 + \delta)$.

• Key quantity $q:=\left(1+\sigma_{\delta}^{2}
ight)^{-1}\in(0,1),$

$$\left\{ egin{aligned} q
ightarrow 1 & ext{Sharply peaked, } pprox ext{Gaussian} \ q
ightarrow 0 & ext{Heavily tailed.} \ q = rac{1}{2}
ightarrow \sigma_{\delta} = 1. \end{aligned}
ight.$$

What is to be expected?

Log. score function + huge range = no good.

Exact result in terms of *q*-series :

$$egin{aligned} s_n^2(\sigma_\delta^2) &= q^2 rac{q^n}{1-q^n} (q:q)_{n-1} \, \psi_n^2(q) \ s_n^2(\ln \mu) &= rac{q^n}{1-q^n} (q:q)_{n-1} \, . \end{aligned}$$

where

$$(t:q)_n := \prod_{k=0}^{n-1} \left(1 - tq^k\right) \quad q$$
 - Pochammer symbol, $\psi_n(q) := \sum_{k=1}^{n-1} \frac{q^k}{1 - q^k}$ Lambert Series

Sketch of derivation:

Using $m_{i+j} = m_i m_j q^{-ij}$ show

$$\left\langle P_n(q^ix)\right\rangle = \frac{1}{m_i}\left\langle P_n(x)x^i\right\rangle \to \left\langle P_n(tx)\right\rangle = \sum_{k=0}^n C_{nk}t^k m_k = \infty (t:q)_n$$

and combine with $m_n = \mu^n q^{-n(n-1)/2}$ and with

$$s_{n} = \sum_{k=0}^{n} C_{nk} \frac{\partial m_{k}}{\partial \alpha}$$

$$\propto \sum_{k=0}^{n} C_{nk} k (k-1) m_{k} \quad (\alpha = \sigma_{\delta}^{2})$$
or $\propto \sum_{k=0}^{n} C_{nk} k m_{k} \quad (\alpha = \ln \mu)$

Cumulative efficiencies, $\alpha \sim \sigma_{\delta}^2$

Cumulative efficiencies, $\alpha \sim \ln \mu$

Where is the information gone?

Information density:

$$f_{\alpha\beta} = p \frac{\partial \ln p}{\partial \alpha} \frac{\partial \ln p}{\partial \beta} = \frac{1}{p} \frac{\partial p}{\partial \alpha} \frac{\partial p}{\partial \beta}$$

Most of the information is the underdense regions, inaccessible to the moments dominated by the peaks. \rightarrow combination of two effects.

Generic behavior, seen in simulations

$$x = 1 + \frac{\kappa}{\kappa_0}$$
, κ convergence field

$$p(x,\sigma) = \frac{Z}{x} \exp \left[-\frac{1}{2\omega^2} \left(\ln x + \frac{\omega^2}{2} \right)^2 \left(1 + \frac{A}{x} \right) \right].$$

Pdf fit to simulations [Das & Ostriker 2006].

Several variables and fields

• Decomposition conceptually identical for any number d of variables : approximate $\partial_{\alpha} \ln p$ through orthogonal polynomials in d variables, and collect the terms of order N. There are $\binom{N+d-1}{N}$ independent polynomials of order N.

$$P_{\mathbf{n}}(\mathbf{x})$$
, $\mathbf{n} = (n_1, \dots, n_d) \leftrightarrow n$ is the only change.

- Hard!
- For independent variables, information adds up order by order (score functions adds up).

Multivariate lognormal

For uncorrelated fiducial, but parameter creating correlations :

$$P_{\mathbf{n}}(x) = \prod_{i=1}^{d} P_{n_i}(x_i), \quad \langle P_{\mathbf{n}}(x) P_{\mathbf{m}}(x) \rangle = \delta_{\mathbf{nm}}$$

Score function couples variables in pairs :

$$\ln \rho = -\frac{1}{2} \sum_{i,j} (A - \bar{A})_i \xi_{A,ij}^{-1} (A - \bar{A})_j + \text{cst}$$

• $\rightarrow s_{\mathbf{n}}(\alpha) = 0$ if **n** has more than 2 nonzero indices $(since \langle P_n(x) \rangle = 0 \text{ for } n \neq 0).$

Multivariate lognormal

Exact result for uncorrelated fiducial

$$F_{\leq N} = \underbrace{F^{\sigma} \epsilon_{N}(\sigma^{2})}_{\text{same as uncorrelated}} + \underbrace{F^{\xi} \epsilon_{N}(\xi)}_{\text{info. from correlations}}$$

with

$$egin{aligned} \epsilon_{\mathit{N}}(\xi) &:= \sigma_{A}^{4} \sum_{n=2}^{N} \sum_{i=1}^{n-1} s_{i}^{2} (\ln \mu) s_{n-i}^{2} (\ln \mu), \ F_{lphaeta}^{\sigma} &= d rac{\partial \sigma_{A}^{2}}{\partial lpha} rac{\partial \sigma_{A}^{2}}{\partial eta} \left(rac{1}{4 \sigma_{A}^{2}} + rac{1}{2 \sigma_{A}^{4}}
ight) \ F_{lphaeta}^{\xi} &= rac{1}{2 \sigma_{A}^{4}} \sum_{i
eq i} rac{\partial \xi_{\mathit{A},ij}}{\partial lpha} rac{\partial \xi_{\mathit{A},ij}}{\partial eta} \end{aligned}$$

$$\epsilon_{\mathit{N}}(\xi)
ightarrow rac{\mathsf{In}^2\left(1+\sigma_{\delta}^2
ight)}{\sigma_{\delta}^4} = \left(rac{\sigma_{\mathit{A}}}{\sigma_{\delta}}
ight)^4 = \epsilon_{2}(\xi).$$

Comparing to *N*-body simulations

The density field in *N*-body simulation is correlated.
 ? Is it possible at all to compare?

Some hand-waving arguments:

• For $\ln \sigma_8^2$ alike parameter, $\partial_\alpha \ln P \approx \mathrm{cst}$, the correlation structure is completely irrelevant :

$$F_{\alpha\beta}^{P_A} = \frac{V}{2} \int \frac{d^3k}{(2\pi)^3} \frac{\partial \ln P_A}{\partial \alpha} \frac{\partial \ln P_A}{\partial \beta},$$

- First term in ξ/σ^2 expansion of the covariance matrix between the N-point functions. Correct derivatives, approximate covariance matrices.
- Constancy of the improvement factor suggests a common mechanism. Uncorrelated model is a simple parameter independent model.

Numerical arguments

E.g. exact distribution of the information within the second order statistics of the 1D Λ *CDM* lognormal field, $\sigma_{\delta}^2=$ 1, on the amplitude of P_A :

95% of the information within the variance. No independent information from the correlations. Uncorrelated model gives $\epsilon_2 \simeq 0.12$ accurate to some 15%.

It works

Comparing improvement ratios of statistical power of P_A to that of P_δ . $k_{\rm max} \sim 0.3/{\rm Mpc}, \ V = 2.2 Gpc^3$.

- Found in the simulations : $\ln \sigma_8^2$: 2.5, n_s : 2.4
- Uncorrelated model predictions : 2.0-2.9 (range reflects some ambiguity in the value of the variance $\sigma_A^2 = \ln(1 + \sigma_\delta^2)$).

Uncorrelated fiducial model

Introduce parameter dependence through the model with uncorrelated fiducial. In Fourier space :

$$\frac{\left[F_{\leq N}\right]_{\alpha\beta}}{F_{\alpha\beta}^{P_A}} = \underbrace{\epsilon_N(\xi)\left[1 - R_{\alpha\beta}\right]}_{\text{from correlations}} + \underbrace{\epsilon_N(\sigma_\delta^2)\left(1 + \frac{1}{2}\sigma_A^2\right)R_{\alpha\beta}}_{\text{from the variance, uncorrelated model}}$$

where

$$R_{\alpha\beta} = \frac{\int dk \ k^2 \partial_{\alpha} \ln P_A \int dk \ k^2 \partial_{\beta} \ln P_A}{\left(\int dk \ k^2\right) \int dk \ k^2 \partial_{\alpha} \ln P_A \partial_{\beta} \ln P_A}$$

calibrates the part of the information coming from the correlations at nonzero lag to that from the variance.

 \rightarrow No real change to the generic factor of improvement, as found in the simulations.

Conclusions

- Non intuitive statistics at work in fields with high tails. Polynomials form a poor basis set of functions for such densities.
- There is a lot of information in voids that are uneasy to catch with moments. The very deeply non-linear lognormal field is a very non Gaussian field with useless N-point function hierarchy.
- Success of the lognormal model to reproduce N-body simulation results at the level of the spectrum, showing a more powerful statistical inference of standard cosmological parameters from the (noise-free) log-density field.
- While the matter power spectrum becomes a poor descriptor of the field, the one-point pdf is very important.

Freud, G. (1971).

Orthogonal Polynomials.

Pergamon Press Ltd., Headington Hill Hall, Oxford.

Information density

Comparison to SPT

Since

$$\sum_{n=1}^{N} s_n^2 = \sum_{i,j=1}^{N} \frac{\partial m_i}{\partial \alpha} \left[\Sigma^{-1} \right]_{ij} \frac{\partial m_j}{\partial \alpha}$$
$$\Sigma_{ij} := m_{i+j} - m_i m_j,$$

we can obtain s_n from $m_1 - m_{2n}$ (knowledge of the full shape of p_X not required).

ightarrow We can compare the lognormal predictions on the information content of the first few moments of the density fluctuation field δ with perturbation theory [Bernardeau 2004].

Comparison to SPT

SPT:

$$\langle \delta^n
angle = m_n = m_n^{Gauss} + \sigma_\delta^{2(n-1)} S_n$$

with variance

$$\sigma_{\delta}^{2}(R) = \frac{1}{2\pi^{2}} \int_{0}^{\infty} dk \ k^{2} P(k, \alpha) |W(kR)|^{2}.$$

 S_n very weakly dependent on cosmology \to model parameter independent comparison to lognormal predictions possible.

With S_n up to S_6 as given in [Bernardeau 2004], we evaluated s_3/s_2 (vanishes for a Gaussian distribution), for Λ CDM universe.

Comparison to SPT

Impact of noise

