Black holes, TeV-scale gravity and the LHC

Elizabeth Winstanley

Consortium for Fundamental Physics School of Mathematics and Statistics, University of Sheffield

< 回 ト < 三 ト < 三 ト

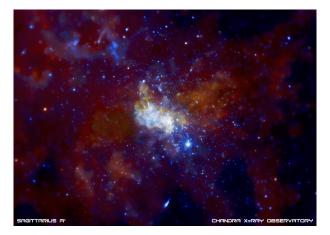
Thanks to STFC and EU-COST network MP0905 for financial support

Outline

1 Black holes in classical and semi-classical gravity

- Black holes in classical gravity
- Black holes in semi-classical gravity

2 Large extra dimensions


3 Mini black hole production and decay

- Balding phase
- Spin-down and Schwarzschild phases

Experimental searches

5 Quantum black holes

Black holes in classical and semi-classical gravity

Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM, Venice, March 2013 3 / 46

▲撮♪ ★ 注♪ ★ 注♪ ……注

Black holes in four-dimensional general relativity

The simplest black hole: vacuum, static and spherically symmetric

Schwarzschild black hole

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}$$

Metric becomes singular at

- Curvature singularity $r \rightarrow 0$
- Co-ordinate singularity $r = r_H = 2M$
- Schwarzschild radius $r_H = 2M$
- Black hole has mass M

()

Four-dimensional rotating black holes

Vacuum, axisymmetric

Kerr black hole

$$ds^{2} = -\frac{\Delta}{\Sigma} \left[dt - a\sin^{2}\theta \, d\phi \right]^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2} + \frac{\sin^{2}\theta}{\Sigma} \left[\left(r^{2} + a^{2} \right) d\phi - a \, dt \right]^{2}$$
$$\Delta = r^{2} - 2Mr + a^{2} \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta$$

• Event horizon at $\Delta = 0$

$$r_H = M + \sqrt{M^2 - a^2}$$

• Event horizon rotates with angular velocity

$$\Omega_H = \frac{a}{r_H^2 + a^2}$$

• Black hole has mass M and angular momentum J = aM

Higher-dimensional black holes d = 4 + n

Myers-Perry black hole [Myers and Perry, Annals Phys. 172, 304 (1986)]

$$ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu\sin^{2}\theta}{\Sigma r^{n-1}} dt \, d\varphi - \frac{\Sigma}{\Delta_{n}} dr^{2} - \Sigma \, d\theta^{2}$$
$$- \left(r^{2} + a^{2} + \frac{a^{2}\mu\sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta \, d\varphi^{2} - r^{2}\cos^{2}\theta \, d\Omega_{n}^{2}$$

where

$$\Delta_n = r^2 + a^2 - \frac{\mu}{r^{n-1}}, \qquad \Sigma = r^2 + a^2 \cos^2 \theta$$

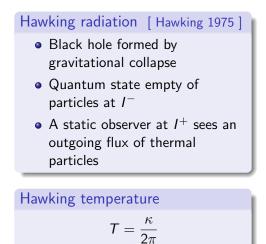
Black hole mass M and angular momentum J:

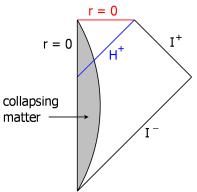
$$M = \frac{(n+2)A_{n+2}\mu}{16\pi G_{4+n}}, \qquad J = \frac{2aM}{n+2}$$

くほと くほと くほと

Black holes in semi-classical gravity

Quantum field theory in curved space-time


- Keep geometry fixed and classical (but not necessarily static)
- Quantum fields propagating on this background
- Semi-classical approximation to quantum gravity
- Semi-classical Einstein equations


$$R_{\mu
u}-rac{1}{2}Rg_{\mu
u}+\Lambda g_{\mu
u}=8\pi\langle T_{\mu
u}
angle$$

• $\langle {\cal T}_{\mu\nu} \rangle$ - renormalized expectation value of the quantum stress-energy tensor

・ 同 ト ・ ヨ ト ・ ヨ ト

"Black holes ain't so black"

∃ → (∃ →

Black hole evaporation

Black hole temperature of a Schwarzschild black hole

$$T_{BH} = \frac{\kappa}{2\pi} = \frac{1}{8\pi M}$$

As the black hole radiates

- The black hole shrinks and its mass decreases
- The temperature T_{BH} increases
- Black holes have negative specific heat
- Rate of energy loss

$$\frac{dM}{dt} \propto \frac{1}{M^2}$$

• Lifetime of a Schwarzschild black hole of initial mass M_0

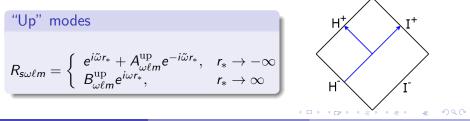
$$t_{BH} \propto M_0^3$$

Quantum fields on black hole space-times

Quantum field modes

- "Master" equation for fields of spin 0, ¹/₂, 1 and 2 on Kerr
 [Teukolsky, *Phys. Rev. Lett.* 29 1114 (1972); *Astrophys. J.* 185 635 (1973)]
- Expand field Ψ in terms of modes of frequency ω :

$$\Psi = \sum_{\omega \ell m} R_{s \omega \ell m}(r) S_{s \omega \ell m}(\theta) e^{-i \omega t} e^{i m \varphi}$$



Quantum fields on black hole space-times

Quantum field modes

- "Master" equation for fields of spin 0, ¹/₂, 1 and 2 on Kerr
 [Teukolsky, *Phys. Rev. Lett.* 29 1114 (1972); *Astrophys. J.* 185 635 (1973)]
- Expand field Ψ in terms of modes of frequency ω :

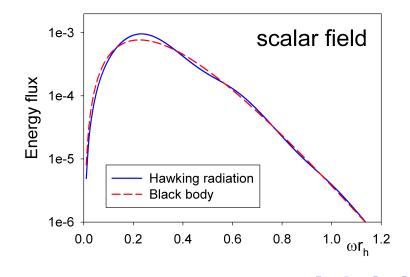
$$\Psi = \sum_{\omega \ell m} R_{s \omega \ell m}(r) S_{s \omega \ell m}(\theta) e^{-i \omega t} e^{i m \varphi}$$

Computing Hawking radiation

Differential emission rates, integrated over all angles:

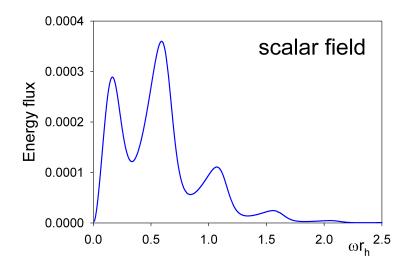
$$\frac{d^2}{dt \, d\omega} \begin{pmatrix} N \\ E \\ J \end{pmatrix} = \frac{1}{4\pi} \sum_{\text{modes}} \frac{\left|\mathcal{A}_{s\omega\ell m}\right|^2}{e^{\tilde{\omega}/T_H} \mp 1} \begin{pmatrix} 1 \\ \omega \\ m \end{pmatrix}$$

where $\tilde{\omega} = \omega - m\Omega_H$


Elizabeth Wi

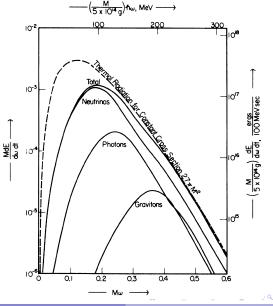
Grey-body factor $\left|\mathcal{A}_{s\omega\ell m}\right|^2$

- Emitted radiation is not precisely thermal
- Interaction of emitted quanta with gravitational potential around the black hole
- For an outgoing wave from the event horizon of the black hole:

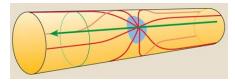

$$|\mathcal{A}_{s\omega\ell m}|^{2} = 1 - |\mathcal{A}_{\omega\ell m}^{up}|^{2} = \frac{\mathcal{F}_{\text{infinity}}}{\mathcal{F}_{\text{horizon}}}$$

Hawking emission from a Schwarzschild black hole

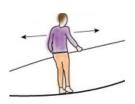
Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM, Venice, March 2013 12 / 46


Hawking emission from a Kerr black hole

Properties of Hawking radiation from 4D black holes

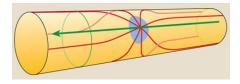

- For a Schwarzschild black hole, the emission decreases significantly as the spin of the particle increases
- Kerr black hole sheds its angular momentum very rapidly

[Figure taken from Page, Physical Review **D** 13 198 (1976)]



Large extra dimensions

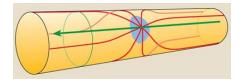
Kaluza-Klein theory [1921/26] Additional, compact space-like dimension smaller than any observable length-scale


An acrobat can only move in one dimension along a rope..

...but a flea can move in two dimensions.

< 🗇 🕨

A B A A B A

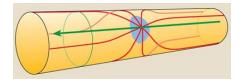


Kaluza-Klein theory [1921/26] Additional, compact space-like dimension smaller than any observable length-scale Superstring theory [1970's-80's] Unifies all forces in 10 space-time

dimensions, 6 of which are compactified and roughly of the size of the Planck length L_P

Planck length

$$L_P = \sqrt{\frac{\hbar G}{c^3}} \sim 10^{-35} \text{ m}$$



Kaluza-Klein theory [1921/26] Additional, compact space-like dimension smaller than any observable length-scale

Superstring theory [1970's-80's] Unifies all forces in 10 space-time dimensions, 6 of which are compactified and roughly of the size of the Planck length L_P

M-theory [mid 1990's] Five different string theories are different limits of underlying 11-dimensional theory

A 12 N A 12 N

Kaluza-Klein theory [1921/26] Additional, compact space-like dimension smaller than any observable length-scale

Superstring theory [1970's-80's] Unifies all forces in 10 space-time dimensions, 6 of which are compactified and roughly of the size of the Planck length L_P

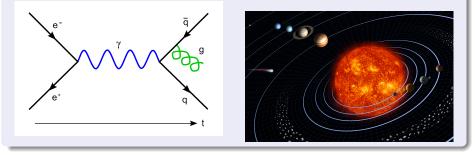
M-theory [mid 1990's] Five different string theories are different limits of underlying 11-dimensional theory

Horava-Witten theory [1996] Size of 11th dimension can be very much larger than L_P

- 4 同 6 4 日 6 4 日 6

The hierarchy problem

Two very different energy scales in fundamental physics


Electroweak scale

Planck mass

Higgs mass $\, \sim 100 \,\, {
m GeV}$

$$M_P = \sqrt{rac{\hbar c}{G}} \sim 10^{19} \; {
m GeV}$$

A B A A B A

The hierarchy problem

Two very different energy scales in fundamental physics

Electroweak scale

Higgs mass $\,\sim 100~{ m GeV}$

$$M_P = \sqrt{rac{\hbar c}{G}} \sim 10^{19} \; {
m GeV}$$

Planck mass

A D A D A D A

The (A)ADD scenario

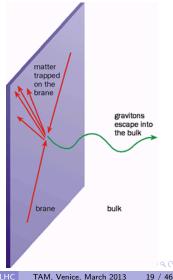
[Antoniadis, Arkani-Hamed, Dimopoulos and Dvali, hep-ph/9803315 ; hep-ph/9804398]

Large volume for extra compact dimensions lowers the fundamental scale of quantum gravity to M_{\ast}

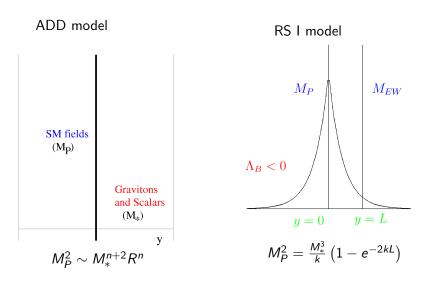
$$M_P^2 \sim R^n M_*^{2+n}$$

n - number of extra dimensions R - size of extra dimensions f $M_* \sim 1~{
m TeV}$

$$R\sim 10^{rac{30}{n}-19}$$
 m


For n = 5, $R \sim 10^{-13}$ m

The (A)ADD scenario


[Antoniadis, Arkani-Hamed, Dimopoulos and Dvali, hep-ph/9803315 ; hep-ph/9804398]

To avoid a contradiction with Standard Model physics:

- 4D brane where all Standard Model particles live
- Effective scale for gravity is *M_P* on the brane
- (4 + n) D bulk
- Only gravitons propagate in the bulk
- Higher-dimensional fundamental scale for gravity is *M*_{*}

Brane worlds

[Figures taken from Kanti, arXiv:0802.2218 [hep-th]]

Consequences of the ADD model

KK-modes

- A field in the higher-dimensional theory is seen by an observer on the brane as an infinite tower of massive modes with $m\sim 1/R$
- Produced at energies E > 1/R, modifying processes on the brane
- Modification of short-range gravitational potential

$$V(r) = -\frac{G_N M_1 M_2}{r} \left(1 + \alpha e^{-r/R}\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Consequences of the ADD model

KK-modes

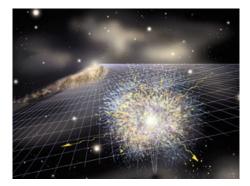
- A field in the higher-dimensional theory is seen by an observer on the brane as an infinite tower of massive modes with $m\sim 1/R$
- Produced at energies E > 1/R, modifying processes on the brane
- Modification of short-range gravitational potential

$$V(r) = -\frac{G_N M_1 M_2}{r} \left(1 + \alpha e^{-r/R}\right)$$

Probing quantum gravity at colliders

Elizabeth Winstanley (Sheffield)

- Collider experiment with centre-of-mass energy $\sqrt{s} > M_{*}$ will probe strong-gravity regime
- Creation of heavy extended gravitational objects

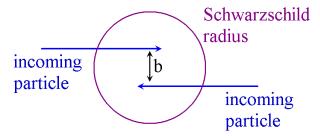

```
[Banks and Fischler, hep-th/9906038]
```

Black holes, TeV-scale gravity and the LHC

TAM, Venice, March 2013

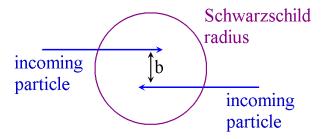
21 / 46

Mini black hole production and decay



[Image credit: Aurore Simonet]

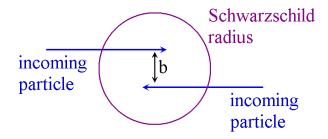
Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM, Venice, March 2013 22 / 46


Black hole production

Two particles with centre-of-mass energies greater than M_* , and impact parameter b:

Black hole production

Two particles with centre-of-mass energies greater than M_* , and impact parameter b:


4D hoop conjecture [Thorne, Magic Without Magic 231 (1972)]

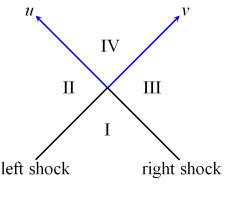
A black hole is formed when a mass M gets compacted into a region whose circumference in every direction is less than $2\pi r_H(M)$

くほと くほと くほと

Black hole production

Two particles with centre-of-mass energies greater than M_* , and impact parameter b:

Hyperhoop conjecture [Ida and Nakao, gr-qc/0204082]


A black hole is formed when a mass M gets compacted into a region whose D-3-dimensional volume in every direction is less than $\alpha_D M$ Modified hyperhoop conjecture required when extra dimensions are compactified [Yoo et al, arXiv:0906.0689 [gr-qc]]

Modelling the formation of mini black holes

- Classical process
- Model particles as infinitely-boosted black holes
- Search for apparent horizon
- Maximum impact parameter *b_{max}*
- Parton-level production cross-section

$$\sigma \sim \pi b_{max}^2 \sim 3\pi r_h^2$$

[Yoshino and Rychkov, hep-th/0503171] Aichelberg-Sexl shock waves [Aichelberg and Sexl, GRG **2** 303 (1971)]

18 A.

Classical high energy collisions in numerical relativity

Model particles as colliding boson stars, fluid particles or black holes

Key questions [Sperhake, arXiv:1301.3772 [gr-qc]]

- Validity of the hoop conjecture
- Scattering threshold for black hole formation
- Mass and spin of the formed black holes
- Effects of internal structure of colliding objects

Results to date

- Four-dimensional collisions best studied
- Higher-dimensional work in early days
 [Witek et al, arXiv:1006.3081 [gr-qc]; arXiv:1011.0742 [gr-qc]]

```
[Okawa et al, arXiv:1105.3331 [gr-qc] ]
```

(日) (同) (日) (日) (日)

- 34

Classical high energy collisions in numerical relativity

Model particles as colliding boson stars, fluid particles or black holes

Key questions [Sperhake, arXiv:1301.3772 [gr-qc]]

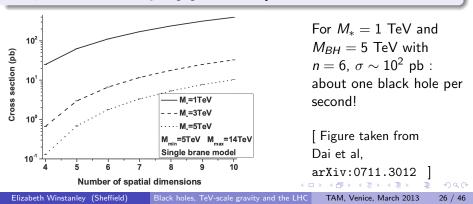
- Validity of the hoop conjecture
- Scattering threshold for black hole formation
- Mass and spin of the formed black holes
- Effects of internal structure of colliding objects

Results to date

- Four-dimensional collisions best studied
- Higher-dimensional work in early days
 [Witek et al, arXiv:1006.3081 [gr-qc]; arXiv:1011.0742 [gr-qc]]

```
[Okawa et al, arXiv:1105.3331 [gr-qc] ]
```

(日) (同) (日) (日) (日)

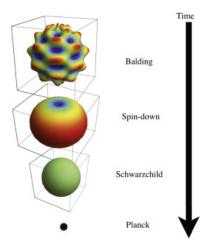

- 32

Black hole production cross-sections

Parton-level BH production cross-section

$$\sigma_{
m production}^{
m ij}
ightarrow {
m BH}{
m BH} \propto \pi r_{H}^{2} \sim rac{1}{M_{*}^{2}} \left(rac{E}{M_{*}}
ight)^{rac{2}{n+1}}$$

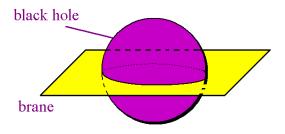
[Giddings and Thomas, hep-ph/0106219; Dimopoulos and Landsberg, hep-ph/0106295]


Stages in the life of a mini black hole

[Giddings and Thomas, hep-ph/0106219]

Balding phase Shedding of hair and asymmetries Spin-down phase Loss of angular momentum via Hawking radiation Schwarzschild phase Loss of mass via Hawking radiation Planck phase $M_{BH} \sim M_*$

Image credit:


[Park, arXiv:1203.4683 [hep-ph]]

Modelling mini black holes at the end of the balding stage

Small black holes in ADD

- Metric of higher-dimensional black holes in general relativity is known [Myers and Perry, Annals Phys. **172**, 304 (1986)]
- Take a 'slice' through a higher-dimensional black hole to give a brane black hole

A B < A B </p>

Modelling mini black holes in ADD

Slice of Myers-Perry black hole

$$ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu\sin^{2}\theta}{\Sigma r^{n-1}} dt \, d\varphi - \frac{\Sigma}{\Delta_{n}} dr^{2} - \Sigma \, d\theta^{2}$$
$$- \left(r^{2} + a^{2} + \frac{a^{2}\mu\sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta \, d\varphi^{2}$$

where

$$\Delta_n = r^2 + a^2 - \frac{\mu}{r^{n-1}}, \qquad \Sigma = r^2 + a^2 \cos^2 \theta$$

and n is the number of extra dimensions.

Usual Kerr black hole Set n = 0 in the above metric Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM. Venice, March 2013 29 / 46

Shedding of mass and angular momentum through gravitational radiation modeled as part of formation process

Limits on amount of energy lost in gravitational radiation

- Colliding shock waves: $\leq 30\%$ (n = 0), $\leq 40\%$ (n = 7)[Yoshino and Rychkov, hep-th/0503171]
- Four-dimensional numerical relativity: ≤ 50% (n = 0) [Sperhake et al, arXiv:1211.6114 [gr-qc]]

Angular momentum of formed black hole

- Angular momentum of black holes with n > 1 potentially unbounded
- Limited by maximum impact parameter
- Colliding shock waves: $j \sim 0.93$ (n = 1) [Yoshino and Rychkov, hep-th/0503171]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shedding of mass and angular momentum through gravitational radiation modeled as part of formation process

Limits on amount of energy lost in gravitational radiation

- Colliding shock waves: $\leq 30\%$ (n = 0), $\leq 40\%$ (n = 7)[Yoshino and Rychkov, hep-th/0503171]
- Four-dimensional numerical relativity: ≤ 50% (n = 0) [Sperhake et al, arXiv:1211.6114 [gr-qc]]

Angular momentum of formed black hole

- Angular momentum of black holes with n > 1 potentially unbounded
- Limited by maximum impact parameter
- Colliding shock waves: $j \sim 0.93$ (n = 1) [Yoshino and Rychkov, hep-th/0503171]

イロト 不得 トイヨト イヨト ニヨー

Very little work done on shedding charges or gauge field hair

QCD effects

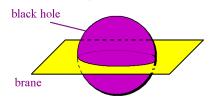
Likely to be significant, but little work on this [Calmet et al, arXiv:0806.4605 [hep-ph]] [Gingrich, arXiv:0912.0826 [hep-ph]]

Electromagnetic effects

- Effect of charge on formation process [Zilhao et al, arXiv:1205.1063 [gr-qc]]
- Classical Maxwell field on the brane only modifies the "slice" of the Myers-Perry black hole
- Loss of black hole charge is not rapid in TeV gravity models

Very little work done on shedding charges or gauge field hair

QCD effects


Likely to be significant, but little work on this [Calmet et al, arXiv:0806.4605 [hep-ph]] [Gingrich, arXiv:0912.0826 [hep-ph]]

Electromagnetic effects

- Effect of charge on formation process
 [Zilhao et al, arXiv:1205.1063 [gr-qc]]
- Classical Maxwell field on the brane only modifies the "slice" of the Myers-Perry black hole
- Loss of black hole charge is not rapid in TeV gravity models

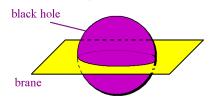
```
[Sampaio, arXiv:0907.5107 [hep-th] ]
```

Hawking radiation on the brane and in the bulk

Particles on the brane

- Standard model particles: fermions, gauge bosons, Higgs
- Also gravitons and scalars
- Live on the brane "slice" of the black hole geometry

Hawking temperature


$$T_{H} = \frac{(n+1)r_{h}^{2} + (n-1)a^{2}}{4\pi(r_{h}^{2} + a^{2})r_{h}}$$

Particles in the bulk

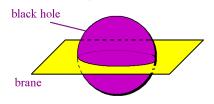
- Gravitons and scalars
- Will be invisible
- Live on the higher-dimensional black hole geometry

18 A.

Hawking radiation on the brane and in the bulk

Particles on the brane

- Standard model particles: fermions, gauge bosons, Higgs
- Also gravitons and scalars
- Live on the brane "slice" of the black hole geometry


Hawking temperature

$$T_{H} = \frac{(n+1)r_{h}^{2} + (n-1)a^{2}}{4\pi(r_{h}^{2} + a^{2})r_{h}}$$

Particles in the bulk

- Gravitons and scalars
- Will be invisible
- Live on the higher-dimensional black hole geometry

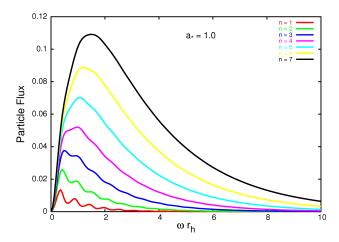
Hawking radiation on the brane and in the bulk

Particles on the brane

- Standard model particles: fermions, gauge bosons, Higgs
- Also gravitons and scalars
- Live on the brane "slice" of the black hole geometry

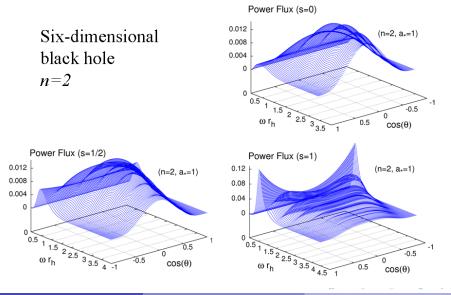
Hawking temperature

$$T_{H} = \frac{(n+1)r_{h}^{2} + (n-1)a^{2}}{4\pi(r_{h}^{2} + a^{2})r_{h}}$$


Particles in the bulk

- Gravitons and scalars
- Will be invisible
- Live on the higher-dimensional black hole geometry

- N


Emission spectra

Fermion emission spectra for a rotating black hole, integrated over all angles

[Figure taken from Casals et al, hep-th/0608193]

Angular distribution of energy flux

What we know about the Hawking radiation phases

"Spin-down" phase

- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission partial results only

"Schwarzschild" phase

- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission bulk and brane done

"Black holes radiate mainly on the brane"

[Emparan, Horowitz and Myers, hep-th/0003118]

Ratio of bulk/brane emission for massless scalars, n = 2

	$a_{*} = 0.0$	$a_* = 0.2$	$a_{*} = 0.4$	$a_{*} = 0.6$	$a_{*} = 0.8$	$a_* = 1.0$
ĺ	19.9%	18.6%	15.3%	11.7%	9.0%	7.1%
[Casals et al, arXiv:0801.4910			01.4910 []	nep-th]]		

What we know about the Hawking radiation phases

"Spin-down" phase

- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission partial results only

"Schwarzschild" phase

- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission bulk and brane done

"Black holes radiate mainly on the brane"

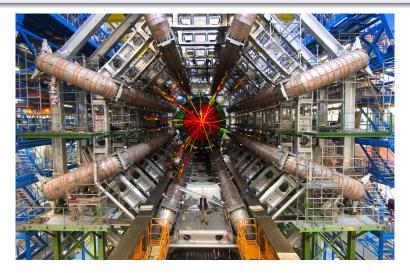
[Emparan, Horowitz and Myers, hep-th/0003118]

Ratio of bulk/brane emission for massless scalars, n = 2

	$a_{*} = 0.0$	$a_{*} = 0.2$	$a_{*} = 0.4$	$a_{*} = 0.6$	$a_{*} = 0.8$	$a_* = 1.0$
ĺ	19.9%	18.6%	15.3%	11.7%	9.0%	7.1%
[Casals et al, arXiv:0801.4910 [hep-th]						

What we know about the Hawking radiation phases

"Spin-down" phase


- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission partial results only

"Schwarzschild" phase

- Brane emission scalars, fermions, gauge bosons done
- Bulk emission scalars done
- Graviton emission bulk and brane done

"Black holes radiate mainly on the brane" [Emparan, Horowitz and Myers, hep-th/0003118] Ratio of bulk/brane emission for massless scalars, n = 2 $a_* = 0.0$ $a_* = 0.2$ $a_* = 0.4$ $a_* = 0.6$ $a_* = 0.8$ $a_* = 1.0$ 19.9% 18.6% 15.3% 11.7% 9.0% 7.1%[Casals et al, arXiv:0801.4910 [hep-th]]

Experimental searches

[Image credit: ATLAS experiment ©2012 CERN]

Elizabeth Winstanley (Sheffield)

Black holes, TeV-scale gravity and the LH

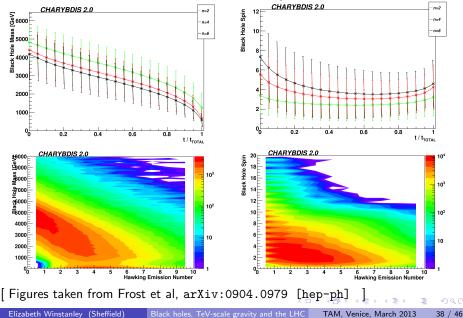
TAM, Venice, March 2013

(日) (同) (日) (日) (日)

36 / 46

Simulations of black hole events at the LHC

To discover black holes at the LHC, accurate event simulations are required

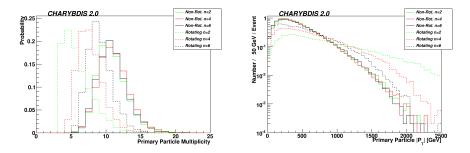

Black hole event generators [Gingrich, hep-ph/0610219]

- TrueNoir [Landsberg, hep-ph/0607297] http://hep.brown.edu/users/Greg/TrueNoir/
- CATFISH [Cavaglia et al, hep-ph/0609001] http://www.phy.olemiss.edu/GR/catfish/introduction.html
- BlackMax [Dai et al, arXiv:0902.3577 [hep-ph]] http://projects.hepforge.org/blackmax/
- CHARYBDIS2 [Frost et al, arXiv:0904.0979 [hep-ph]] http://projects.hepforge.org/charybdis2/
- QBH [Gingrich, arXiv:0911.5370 [hep-ph]] http://projects.hepforge.org/qbh/

(日) (同) (日) (日) (日)

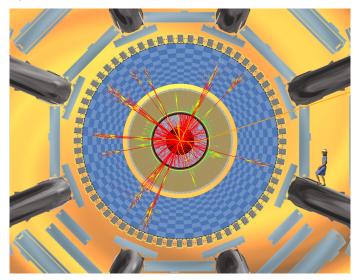
- 3

Evolution of black holes simulated by CHARYBDIS2



Results from CHARYBDIS2

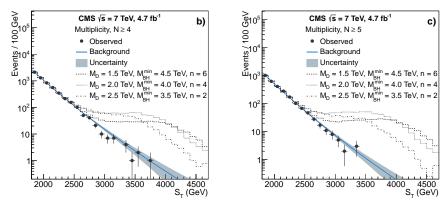
Primary particle multiplicity


Primary particle P_T

- 4 週 ト - 4 三 ト - 4 三 ト

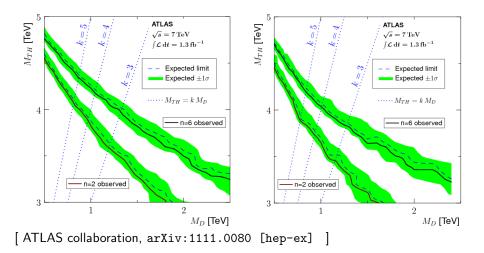
[Figures taken from Frost et al, arXiv:0904.0979 [hep-ph]]

An example black hole event

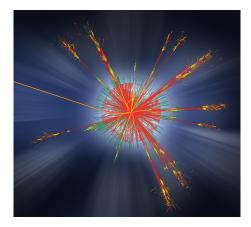

[Image credit: ATLAS experiment ©2012 CERN]

Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM, Venice

TAM, Venice, March 2013 4


40 / 46

CMS search for black hole events


[CMS collaboration, arXiv:1202.6396 [hep-ex]

ATLAS search for black hole events

(日) (同) (日) (日) (日)

Quantum black holes

[Image credit: ATLAS experiment ©2012 CERN]

Elizabeth Winstanley (Sheffield) Black holes, TeV-scale gravity and the LHC TAM, Venice, March 2013 43 / 46

A B A A B A

Drawbacks of the "standard" black hole model

Black hole formation

Classical approximation

- Colliding particles described by general relativity
- Difficult to include quantum fields, particularly QCD

Black hole evolution

Semi-classical approximation

- Black hole geometry described by general relativity
- Quantum fields on this background
- Semi-classical approximation breaks down for $M_{BH} \sim M_{*}$
- Details of quantum gravity unknown

- 4 同 6 4 日 6 4 日 6

Beyond the semi-classical approximation

Validity of semi-classical approximation

Compton wavelength of colliding particle of energy E/2 must lie within the Schwarzschild radius:

$$4\pi/E < r_h(E)$$

Therefore $E/M_* \gtrsim 10$ in order for semi-classical black holes to form [Meade and Randall, arXiv:0708.3017 [hep-ph]]

Planckian quantum black holes

Masses close to M_*

- Do not have thermal decay
- Particle physics symmetries used to constrain decay products

```
[Calmet et al, arXiv:0806.4605 [hep-ph]]
[Gingrich, arXiv:0912.0826 [hep-ph]]
```

- 3

Beyond the semi-classical approximation

Validity of semi-classical approximation

Compton wavelength of colliding particle of energy E/2 must lie within the Schwarzschild radius:

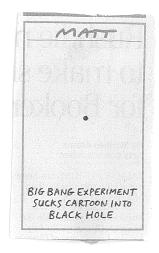
$$4\pi/E < r_h(E)$$

Therefore $E/M_* \gtrsim 10$ in order for semi-classical black holes to form [Meade and Randall, arXiv:0708.3017 [hep-ph]]

Planckian quantum black holes

Masses close to M_*

- Do not have thermal decay
- Particle physics symmetries used to constrain decay products


```
[Calmet et al, arXiv:0806.4605 [hep-ph]]
[Gingrich, arXiv:0912.0826 [hep-ph]]
```

(日) (同) (日) (日) (日)

- 32

Conclusions

- Large-extra-dimension scenarios
- Scale of quantum gravity *M*_{*} could be as low as a few TeV
- Possibility of making microscopic black holes at the LHC
- Semi-classical model decay by Hawking radiation
- Non-observation sets bound on M_*

