

Introduction

- Why are we doing this?
- What were the evaluation criteria?
- Candidates
- Selections
 - And omissions
- Tests
- Status
- Timeline
 - Aim for production service for 2014 data run

Why are we doing this

- CASTOR is working well for us but:
 - CASTOR optimised for many disk servers per pool
 - Getting harder as 'cost optimal' size is getting larger & we have many storage pools
 - Scheduling overhead/'hot spotting'
 - TransferManager (LSF replacement) has improved this A LOT
 - Oracle Costs!
 - Nameserver is Single Point of Failure
 - Not mountable file system
 - Limits take-up outside of WLCG/HEP(Matters as we also use Castor for storage for other STFC user groups)
 - Requires (quite a lot of) specific expertise
- Disk-only not very widely deployed now
 - EOS (CERN ATLAS+CMS), DPM (ASGC)
 - Could cause delays in support resolution
 - Reduced 'community support'
 - Greater risk in meeting future requirements for disk-only

Criteria

'Mandatory':

- Must make more effective use of existing h/w
- Must not restrict hardware purchasing
- Must be able to use ANY commodity disk
- Must support end-to-end checksumming
- Must support ADLER32 checksums
- Must support xrootd and gridFTP
- Must support X509 authentication
- Must support ACLs
- Must be scalable to 100s Petabytes
- Must scale to > 10¹² files
- Must at least match I/O performance of CASTOR

Desirable

- Should provide NFS mountable file system
- **Should** be resilient to hardware failure (disk/memory/node)
- Should support checksum algorithms other than ADLER32
- **Should** be independent of licensed software
- Any required database should be supported by STFC DB Team
- Should provide an HTTP or WebDAV interface
- **Should** support SRM interface
- Should provide a POSIX interface and file protocol
- Should support username/password authentication
- Should support kerberos authentication
- Should support 'hot file' or 'hot block' replication

What else are we looking for?

Draining

- Speed up deployment/decommissioning of new hardware
- Removal
 - Great if you can get data in fast, but if deletes are slow...
- Directory entries
 - We already know experiments have large numbers of files in each directory
 - Need support for lots
- Support
 - Should have good support and wider usage
- IPv6 support
 - Not on roadmap for Castor
 - RAL & Tier 1 starting to look at IPv6

Candidates

- HEP (ish) solutions
 - dCache, DPM, STORM+Lustre, AFS
- Parallel and 'Scale-Out' Solutions
 - HDFS, OpenStack, OrangeFS, MooseFS, Ceph, Tahoe-LAFS, XtreemFS, GfamrFS, GlustreFS,GPFS
- Integrated Solutions
 - IBM SONAS, Isilon, Panasas, DDN, NetApp
- Paper (twiki) based review carried out
 - plus using 'anecdotal'/reported experience where we know sites that run things in production (i.e. reports at HEPiX etc.)

Selection

HEP

	POSIX	SRM	HTTP	NFS	WebDAV	xroot	CDMI	HW Flexibility ¹	HW Loss ²	Distributed Metadata	Automated Replicas (Hotfiling)	End-to-end Checksumming	Notes
CASTOR	X	✓	X	X	X	✓	X	X	X	X	X	✓	*
dCache	✓	\checkmark	✓	✓	✓	\checkmark	cdmi	✓	hwl	X	✓	✓	*
DPM	4	✓	✓	4	✓	✓	cdmi	✓ 3	hwl	X	X	✓	*
STORM + Lustre			http		webDAV		cdmi		X	X	ar		Lustre uses dedicated metadata servers, but their load is limited because they only do pathname and permission checks.
BESTMan + POSIX FS	✓	✓	http	nfs	webDAV	xroot	cdmi	hwf	hwl	dm	ar	X	*
AFS	✓	srm	http	✓	webDav	xroot	cdmi	hwf	hwl	dm	ar	X	*

Notes:

- 1. Allows allocation of space on scales smaller than a single disk server, lacks vendor lock-in
- 2. Is the system resilient to loss of hardware; is there protection against data loss associated with normal hardware failure at the disk server level
- 3. Minimum allocatable size is 1 file system

Selections

- dCache
 - Still has SPoFs
- CEPH
 - Still under development; no lifecycle checksumming
- HDFS
 - Partial POSIX support using FUSE
- orangeFS
 - No file replication, fault tolerant version in preparation
- Lustre
 - Requires server kernel patch (although latest doesn't), no hot file replication?

Some rejections...

DPM

- Well known and widely deployed within HEP
- No hot-file replication, SPoFs, NFS interface not yet stable
- Some questions about scalability

AFS

- Massively scalable (>25k clients)
- Not deployed in 'high throughput production', cumbersome to administer, security

GPFS

- Excellent performance
- To get all required features, locked into IBM hardware, licensed

EOS

- Good performance, auto file replication
- Limited support

- IOZone tests
 - A-la disk server acceptance tests
- Read/Write throughput tests (sequential and parallel)
 - File/gridFTP/xroot
- Deletions
- Draining
- Fault tolerance
 - Rebuild times

dCache

- Under deployment. Testing not yet started

Lustre

- Deployed
- IOZone tests complete, functional tests ongoing

OrangeFS

- Deployed
- IOZone tests complete, functional tests ongoing

CEPH

- RPMs built, being deployed.

HDFS

Installation complete, Problems running IOZone tests, other tests ongoing

Note Lustre hitting a wall doing parallel writes

- Not entirely understood yet (have some hints from other sites
- Assume this is a setup/tuning issue
- Exactly the kind of thing that could disqualify it if we can't fix

Write Rates for 2GB Source File

Read Time for 2GB Source File

Read Rate for 2GB Source Files

- Very Provisional so far
 - Castor rather well tuned at RAL
 - Lustre & OrangeFS hardly tuned
- Non-binding summary
 - OrangeFS & Ceph
 - look promising in long term but immature
 - dCache
 - surely could do most of what we need
 - Still file based
 - Lustre
 - Promising
 - Like that it is block based
 - Like no SPoFs
 - Stable
 - Could live with occasional downtimes for upgrades

Timeline

Provisional

- Dec 2012 Final Selection (primary and reserve)
- Mar 2013 Pre-Production Instance available
 - WAN testing and tuning
- Jun 2013 Production Instance

Depends on...

- Hardware availability
- Quattor Profiling configurartion should be less complex than CASTOR
- Results from test instances

Open Questions:

- One large instance or multiple smaller ones as now?
 - Large instance with 'dynamic' quotas has some attractions
- Migration from CASTOR
 - Could just use lifetime of hardware

