Status of particle_hp

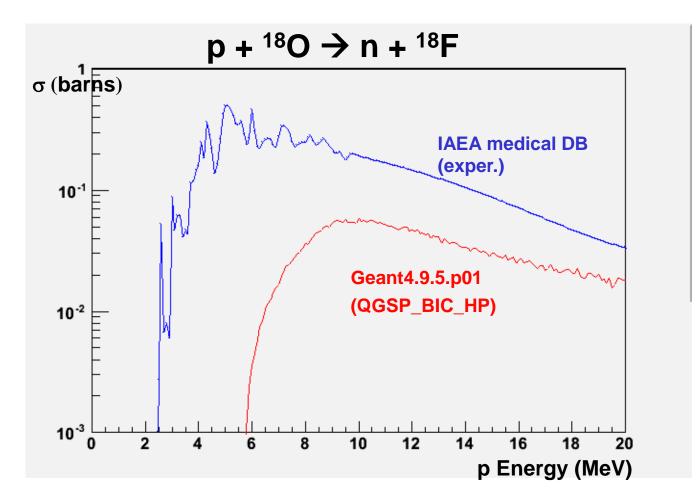
Pedro Arce Emilio Mendoza Daniel Cano-Ott (CIEMAT, Madrid)

What is particle_hp?

neutron_hp package uses evaluated nuclear data bases for neutron
interactions:

- \checkmark Total cross sections
- \checkmark Inelastic channel cross sections
- ✓ Double differential spectra of outgoing particles
- ✓ Gamma emission because of nuclear level transitions

particle_hp: do the same for (inelastic) interactions of other particles (p, d, t, He3, α , γ)


Inelastic interactions of p/d/t/He3/ α/γ particles E < 200 MeV

Why particle_hp?

Geant 4

Theory models or semi-empirical models sometimes cannot reproduce experimental data at low (10-100 MeV), specially for low Z elements (J.M. Quesada agrees):

Status of particle_hp

What nuclear DBs are there?

ENDF-VII:

Ciernal Centro de Investigaciones

BIERNO MINISTERIO ESPAÑA DE CIENCIA

- > Uses experimental data + thorough evaluations
- > Only a few isotopes (p:48, d:5, t:3, He3:2)
- > Only $p \rightarrow X$ reactions (MT=5)
 - > double differential spectra of resulting particles (n,p,d,...), without channel information (n,nn,np,nna,...)
- > Up to 150 MeV for p (d: 50 MeV, t: 20 MeV, He3: 20 MeV)
- ENDF format

TENDL:

- > Uses some experimental data + TALYS calculations
- > All isotopes (2400)
- > All channels (also available a DB with only $p \rightarrow X$ reactions)
- > Up to 200 MeV
- ENDF format

What nuclear DBs are there?

IAEA medical database:

Ciernal Centro de Investigaciones

MINISTERIO DE CIENCIA

- > Only experimental data
- > Only a few reaction channels of a few isotopes
- > Only channel cross sections
- Simple text format

IBANDL database:

- > Only experimental data
- > Not all isotopes
- > Many experimental measurements channel by channel
- > Low energy (up to a few MeV)
- > Own format

PHYSICS LIST:

G4NeutronHPInelastic* theParticleModel= new G4NeutronHPInelastic();

G4ParticleHPInelastic* theParticleModel= new G4ParticleHPInelastic(G4Proton::Proton(),"G4PROTONHPDATA"); or G4ParticleHPInelastic* theParticleModel=

new G4ParticleHPInelastic();

G4NeutronHPInelasticData* theNeutronHPInelasticData= new G4NeutronHPInelasticData();

G4ParticleHPInelasticData* theProtonHPInelasticData= new G4ParticleHPInelasticData(G4Proton::Proton(),"G4PROTONHPDATA"); theProtonHPInelasticData->SetMaxKinEnergy(200.);

or

G4ParticleHPInelasticData* theNeutronHPInelasticData= new G4ParticleHPInelasticData();

KERNEL CODE CHANGES:

> **No new classes**: only modify neutron_hp package

- Rename G4NeutronHP* → G4ParticleHP*
- Thermal scattering only for neutrons
- Eliminate assumptions that projectile is neutron and environmental variable is "G4NEUTRONHPDATA"

G4ParticleHPInelastic G4ParticleHPInelasticData G4ParticleHPorLEInelastic

G4ParticleHP*InelasticFS G4ParticleHPInelasticBaseFS G4ParticleHPInelasticCompFS G4ParticleHPFinalState G4ParticleHPChannel G4ParticleHPChannelList

G4ParticleNames

G4ParticleHPEnAngCorrelation G4ParticleHPContAngularPar G4ParticleHPContEnergyAngular

PARTICLE YIELD CORRECTIONS:

Number of particles of a type produced in an interaction is not sampled in neutron_hp (except for gammas):

• Integer value is taken $2.43 \rightarrow 2$

□ Many charged particle data base isotopes do not have channel by channel cross sections, **only particle yields** (also a few neutron files in current Geant4 data)

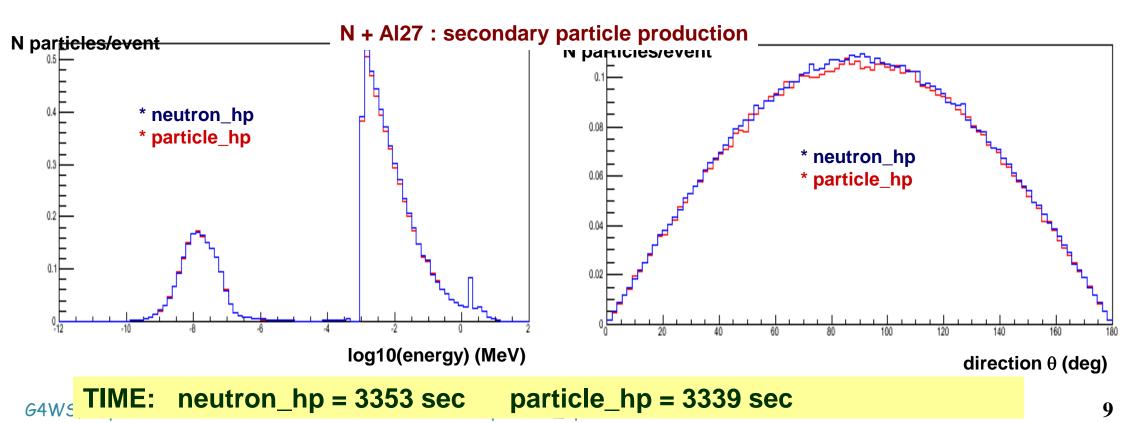
✓ Apply Poisson statistics for all particles

 Set G4PARTICLEHP_DO_NOT_ADJUST_FINAL_STATE 1 (recommended, else particle yields in DB are not used)
 Else check that sum of atomic masses and numbers is not

bigger than target nucleus

• If it is, resample particle yields \rightarrow <u>bias results</u>

Geant 4


ENDF format files → Geant4 format + code reading Geant4 format

Tests

Check isotope per isotope, channel per channel

0. Check neutron physics is the same in neutron_hp & particle_hp Compare:

- > Send neutrons with isolethargical energy distribution $1.E-9 \rightarrow 20 \text{ MeV}$
- Check production of secondary particles: E, position, direction

1. Check total cross sections

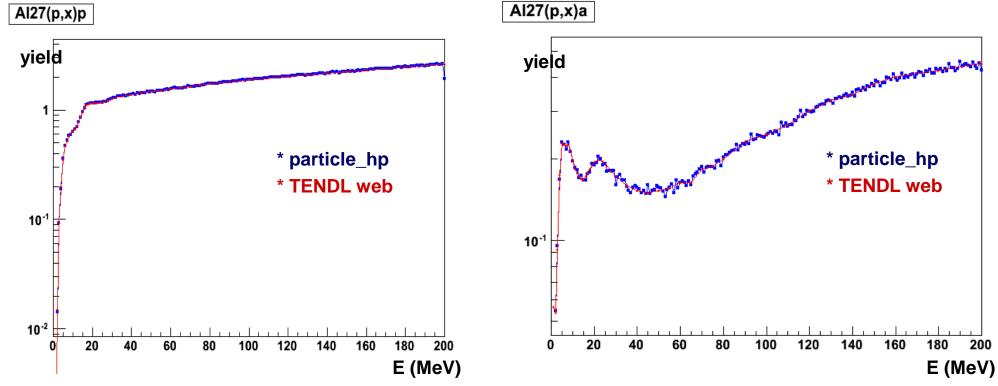
- Run a Geant4 job. 1 proton per energy
 - Ask for cross sections as in a real Geant4 run (G4HadronicProcess::GetMicroscopicCrossSection)
- Compare to cross sections from TENDL web

SORRY. I CANNOT DO FTP OR SSH TO GET THE PLOTS

Tests

BELIEVE ME THEY ARE OK

Status of particle_hp



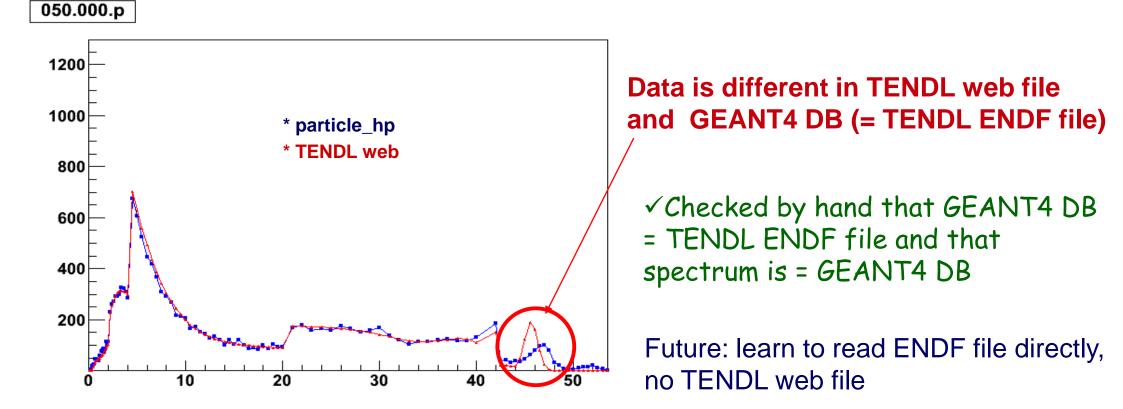
2. Check secondary particle production

Run Geant4 job: 10k protons at each energy, plot the energy of secondary particles produced

Tests

- Deactivate electromagnetic and proton elastic process
- Kill proton after first interaction, and all secondaries
- Compare to TENDL web particle yields (number of particles per inelastic interaction)

Bug found in TENDL data: wrong particle yields. Wait until TENDL 2012 (December)



3. Check secondary particle production: energy spectra

Run Geant4 jobs: 100k protons at one energy, plot the energy of secondary particles produced

Tests

- Deactivate electromagnetic and proton elastic process
- Kill proton after first interaction, and all secondaries
- Compare to TENDL web secondary particle energy spectra

Status of particle_hp

4. Check secondary particle production: emission angle spectra

Run Geant4 jobs: 100k protons at one energy, plot the emission angle of secondary particles produced

Tests

- Deactivate electromagnetic and proton elastic process
- Kill proton after first interaction, and all secondaries
- Compare to TENDL web secondary particle energy spectra

Postponed until TENDL web files are corrected (ENDF files do not contain emission angle spectra, only Kallback-Mann coefficients)

5. Compare with MCNP

MCNP has the possibility to read evaluated data base for protons

- Own data with a few isotopes (LAH150)
- TENDL data

Compare yield of particles, secondary particles energy and emission angle spectra

 \checkmark Work started with the help of a MCNP expert

Automatic testing

- A set of python and ROOT scripts do the job with one line sh checkParticleHP.sh Al 27
- Download all files from TENDL web
- Prepare and send Geant4 jobs (may take a few hours, user decides the statistics)
 - Get total cross sections and particle yields
 - Get energy spectra with same binning as TENDL web files
 - Get emission angle spectra with same binning as TENDL web files
- Prepare plots comparing Geant4 particle_hp and TENDL in gif format

Conclusions

- Geant4 (and other MC) theoretical models do not work well for charged particle (p, d, t, He3, α, γ) inelastic interactions at E < 200 MeV</p>
- Alternative implemented: use evaluated data bases
 - Several available (ENDF, TENDL, IAEA medical, IBANDL)
 - Only experimental data for a few isotopes, for others best guess theoretical interpolations

Geant4 code is working

- First tests done
- More tests on progress
- python code + ROOT scripts will be made public to test your favourite isotope by yourself