
GEant4 Parallelisation
J. Apostolakis

Session Overview

Part 1: Geant4 Multi-threading

C++ 11 threads: opportunity for portability ?

Open, revised and new requirements (from HEP experiments)

Part 2: Beyond MT

Geant4 on GPUs: prototypes

The ‘Geant’ prototype - moving towards Vector

Part 1: Geant4MT & new requests

Geant4 MT - major topics

New Requirements (2012)

Extending model of parallelism (TBB, dispatch) - CMS

Adapting to HEP experiment frameworks

Folding of Geant4-MT into Geant4 release-X (end 2013)

Streamline for maintainability, ...

Need to assess and ensure the compatibility of these directions

Geant4MT - Background
What is Geant4 MT ?

Goals, design, .. see background slides in Addendum (Purple

header)

Implementation is the PhD-thesis work of Xin Dong (NorthEastern

Univ.) under the supervision of Prof. Gene Cooperman, in

collaboration with me (J.Ap.)

Updated to G4 9.4p1 (X+D+M+G), & 9.5p1 by Daniel, Makoto and

Gabriele.

Excellent speedup from 1-worker to 40+ workers - see CHEP 2012

poster

But: Overhead vs Sequential found (first reported by Philippe

Canal, 2011)

http://bit.ly/G4mtChep2012p
http://bit.ly/G4mtChep2012p

Geant4 MT Prototype - brief update
MT updated to Geant4 9.5 patch01 - 15 Aug (Daniel Brandt, Makoto,

Gabriele)

Improved integration of parallel main();

Corrected inclusion of tpmalloc.

Improvements to ‘one-worker’ overhead - now decreased from 30%

to 18% (Xin)

Due to the interaction of Thread Local Storage (TLS) and dynamic

libraries

Goals of Part 1

Geant4 MT and its future

Evaluate whether C++ 11 threads can replace pthreads (soon)

Identify issues, roadblocks for ‘on-demand’ version of G4MT

Note issues which arise from other new requirements.

Topics of Part 1 - Geant4MT

C++ 11 Threads and Portability

Talk by Marc Paterno

Request for support of ‘on demand’ parallelism

Talk in plenary by Chris J., Liz S.-K. (CMS)

New trial usage in ATLAS ISF

Discussion on these & related topics

C++ 11 threads:

Do C++11 ‘standard’ threads enable better portability (than pthreads)

?

What other benefits can C++11 threads offer ?

Are they available today - or soon ?

CMS & on-demand event simulation

Plenary presentation (Chris Jones, Eliz. Sexton-Kennedy)

Request integration into on-demand event simulation

workload is handled by outside framework (CMSsw, TBB= Thread

Building Blocks)

unit of work: a full event.

What is required to adapt Geant4-MT to ‘on-demand’ / dispatch

parallelism ?

Key topic of Discussion session

ATLAS input

Developing trial use - in new Integrated Simulation Framework (ISF)

Passes one track at a time, packaged as a G4 ‘event’ - for each

primary or one entering a sub-detector

Sub-event level parallelization - using ‘event-level’ parallel Geant4-

MT

This is the first use of this capability / potential

The ‘one-worker’ slowdown
Need more benchmarks and profiling. Current known causes:

interaction of Thread Local Storage (TLS) and dynamic libraries?

extra calls to get_thread_id() - in singleton TLS and our “TLS for

objects”

Can we avoid the slowdown due to interaction of (TLS) and

dynamic libraries?

Proposal : try putting all of G4 into one shared library

Or put the core - ‘nearly all’ - into one library, excluding only

auxiliaries: persistency, visualization.

Other Topics for Discussion

Your issues here

Part 2: Beyond threads/tasks

Overview

Need for more events by LHC/HEP experiments, medical users, ..

Challenge in CPUs: instruction fetch is bottleneck due to ‘granular’

OO methods, large number of branches, code size large compared

to caches.

Each instruction, method does too little work

How to get more out of each instruction - and utilize the emerging

architectures: GPUs, MIC, CPU with wider SIMD execution units?

Explore GPUs and Vectors

Opportunities

CPU evolution - wider Vector Units + instructions:

Widespread: CPUs with128-bit units = 2 doubles or 4 floats

Emerging: 256-bit (AVX) = 4 doubles or 8 floats

GPUs: SIMD hardware, specialised languages (CUDA, OpenCL)

Hundreds of ‘threads’, tens of - one MultiProcessor

MIC: New public information - wide Vectors, 4 threads per core, ~60

cores

G4 - GPU efforts: external

GPU efforts external to G4 Collaboration

hGATE project, full gamma processes (2011), e- in progress:

CUDA

G4MCD - team in Germany, both gamma and e-

These efforts focus on use in medical physics

Simple geometry (regular voxel volumes - trivial geometry, no

Navigator.)

In touch with hGATE, part of OpenGATE: D. Visvikis (Brest)

Intro to Geant4-MT
J. Apostolakis

Outline of the Geant4-MT design

•There is one master thread that initialises and spawns workers; and

several worker threads that execute all the ‘work’ of the simulation.

•The unit of work for a worker is a Geant4 event

o limited sub-event parallelism was foreseen by splitting a physical event

(collision or trigger) into several Geant4 events.

•Choice: limit changes to a few classes

oother classes have a separate object for each worker

Goals of Geant4-MT

•Key goals of G4-MT

•allow full use of multi-core hardware (including hyper-threading)

•reduce the memory footprint by sharing the large data structures

•enable use of additional threads within limited memory

•reduce cost of memory accesses.

•Looking forward - a personal view:

•Medium term goals: make Geant4 thread-safe (Geant4 X - Dec 2013)

o for use in multi-threaded applications.

•Longer term goal

o increase the throughput of simulation by enabling the use of additional

resources: co-processors and/or additional hardware threads.

Limit extent of changes

• The choice was to concentrate revisions to a few classes

o to reduce the effort required to create, test and maintain it

• The few classes that are changed are ones that

o manage the event loop

o touch geometry objects with multiple physical instances (replicas etc.)

o must share cross-sections for EM processes,

o which create or configure the above classes.

• All other classes are unchanged

o a separate object is created by each worker.

Implementation

• Uses the POSIX threads library (pthreads)

o currently works only on Linux.

• Global data is separated by thread

o using the gcc construct __thread - this includes singletons.

• The master thread initializes all data

o reads all parameters and starts the other threads;

• Instances of separate objects are cloned by each worker

o copying the contents of all these objects in the master thread (shallow copy or deep copy ?)

'Split' classes

• Some classes are split:

o part of their data is shared, and

o part is thread local.

• Shared data

o is typically invariant in the event loop

o but also 'joint' and updated: ion table, particle table.

• Implementation - customized methodology
o each instance of split object has an integer id

o instantiates an array of stub object for each thread

o an object uses the entry in the array - index= int id

o the (sub-)object data is initialised by the worker thread that uses it.

