

 D H R U V A T . B .

S E P T E M B E R 1 0 , 2 0 1 2 M E N T O R – : J O H N A P O S T O L A K I S

Geant4 On GPU

Project Goals

 Optimised Navigation for HEP geometries on GPU
 Challenges :

 Hierarchy of Volumes

 Variable number of sub-volumes at each level (Zero to thousands)

 Volumes made of many shapes : boxes, cylinders, spheres, …

 Existing Code - Otto Seiskari (2010):

 Support four solids : Orb, Box, Tubs, Cons

 Macros spanning CUDA and OpenCL

 Navigation: Separate functions for few (Normal) or many (Voxel)
sub-volumes – or Combined.

My Work : First Steps

 Porting of Otto’s code to run with OpenCL 1.1
 New method of relocation of data structures

 CPU GPU

X 0001

Geometry
start

G4Logical
Volume

G4VPhysi
calVolume

X0002 X0050

X 0060 X0061 X0062

X 0001 X0002 X0050

X 1000

Geometry
start

G4Logical
Volume

G4VPhysi
calVolume

X1002 X1050

X 1060 X1061 X1062

X 0001 X0002 X0050

My Work

 Automated Checks

 Existing Tests
 Toy1 : 2 volumes; A sphere in a box

 Toy2 : 1000s of volumes; Spheres and Cones placed in a grid

 SimpleCMS : 1643 solids; Simplification of CMS detector using
supported solids

 New Navigation algorithm
 Revamped algorithm

 New way of Computing Steps

 Taking GPU execution model into account

My Work : New Navigation

 New Algorithm For Navigation
 Uses fast cache-like memory called Shared Memory

 Optimized for GPU

 With a ‘Global Mode’ for Debugging

Voxel Navigation :

Thread 1
- Box 1
- Cons
- Box 2

Thread 2
- Cons
- Box 3
- Box 4

New Navigation :

Boxes -4 ; Cons - 2

Thread 1 – Box 1
Thread 2 – Box 2
…

Thread 1 – Box 3
Thread 2 – Box 4
…

GPU Programming : Challenges

 Memory Management
 Global, shared and private memory equivalent to RAM, cache and

registers
 Global and shared memory user managed
 Error on accessing global pointer from shared mem array
 Thousand of threads accessing memory at a time. Potential pitfall.

 Barriers
 To sync all threads
 Code will crash if all threads do not reach the statement.
 For instance, inside loops and conditionals

 Debugging Errors and Crashes
 Errors may not be very descriptive
 Code may crash without errors
 Use different approaches
 Examples -: Return statements; Load buffers and print from CPU

Results

 Improvements to relocation method
 Macros to ensure 64 bit GPU compatibility

 Tested on 64 bit Nvidia GPU

 Checks to ensure correctness
 Relocation -: Have the geometry pointers updated correctly?

 Distance -: Does the new track position correspond to the step
taken ?

 New Navigation algorithm implemented
 Runs on AMD GPU (32 bit)

 Shared Memory Optimization not ‘fully’ implemented

Next Steps

 Compare new algorithm with existing code
 Need to implement all arrays in shared memory before

profiling

 Testing on CUDA and OpenCL 64 bit GPUs

 Documentation
 List of errors faced and ways to debug

 Use of the macros

 Support more (all?) of Geant4 geometry definition

 Test one complete example on GPU

Thank You
Questions?

Backup Slides

Previous Work: G4VPhysicalVolume

typedef struct G4VPhysicalVolume
{
 G4RotationMatrix frot;
 G4ThreeVector ftrans;
 GEOMETRYLOC G4LogicalVolume *flogical;
 // The logicalvolume
 // representing the
 // physical and tracking attributes of
 // the volume
 GEOMETRYLOC G4LogicalVolume *flmother;
 // The current mother logical volume

}
G4VPhysicalVolume;

