The Monash University Compton Scattering Model

J. M. C. Brown, M. R. Dimmock, J. E. Gillam and D. M. Paganin Geant4 17th Collaboration Meeting

School of Physics, Monash University, Australia

10th September, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

Outline

2 Validation and comparison

- Scattered photon and Compton electron kinetic energy spectra
- Compton electron directionality

MONASH University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

Standard Monte Carlo Compton Scattering Models

- Based on Ribberfors' Compton scattering model^a
- Developed to model energy and angular distributions of Compton scattering photons off atomic electrons
- Experimentally validated at low energies^b
- Model was not designed to include energy and angular distributions of Compton electron
- Loss of electron pre-collision momentum information due to 2D projection into photon plane
- Majority of models, Livermore and Penelope, restirct Compton electron to photon plane and estimate ϕ

^aPhys. Rev. B. 12(6), 2067-2074, 1975 ^bNIM A, 349, 489-494, 1994

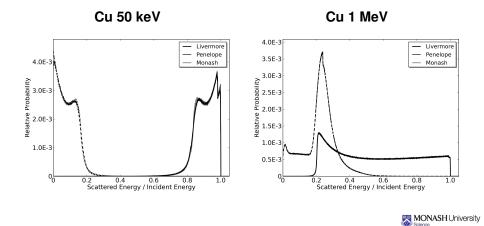
MONASH University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

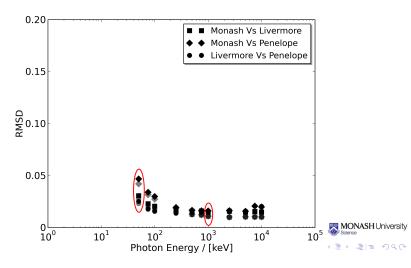
Monash University Compton Scattering Model: G4MUComptonModel

- Utilises a two-body relativistic three-dimensional scattering framework in the relativistic impulse approximation
- Implemented new algorithms to determine scattered photon energy and ejected Compton electron direction
- G4LivermoreComptonModel was used as a template for the creation of G4MUComptonModel
- Utilised selected computational algorithms from G4LivermoreComptonModel to sample:
 - Klein–Nishina cross-section
 - shell and momentum of target electron
 - atomic deexcitation

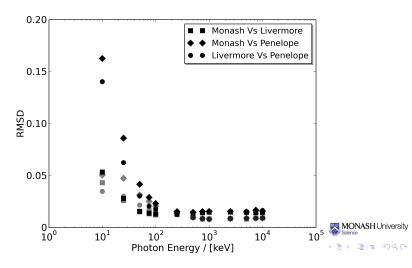
Validation and comparison of G4MUComptonModel


- Comparison of G4MUComptonModel to G4LivermoreComptonModel and G4PenelopeComptonModel:
 - Scattered photon energy spectra
 - Compton electron kinetic energy spectra
 - Compton electron directionality
- Three materials: Carbon (C), Copper (Cu) and Lead (Pb)
- Tested over an energy range of 10 keV to 10 MeV

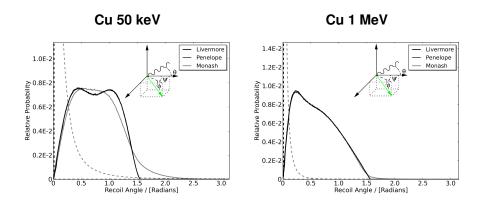
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ

Scattered photon and Compton electron kinetic energy spectra


Scattered photon and Compton electron kinetic energy spectra

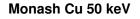
Cu Spectra Root Mean Square Difference



Scattered photon and Compton electron kinetic energy spectra

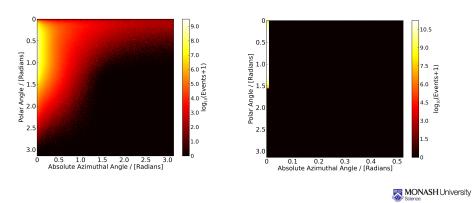
C Spectra Root Mean Square Difference

Polar and azimuthal Compton electron ejection angle distributions



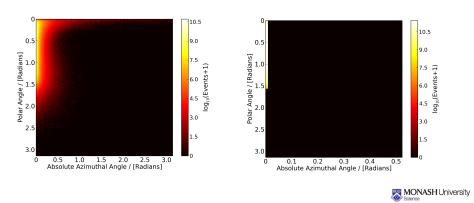
MONASH University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シヘヘ


-

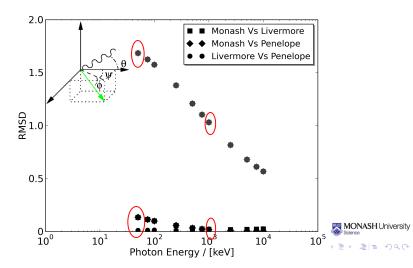
Polar and azimuthal Compton electron ejection angle distributions

< 一型



-

Polar and azimuthal Compton electron ejection angle distributions



Polar and azimuthal Compton electron ejection angle distributions

Cu Spectra Root Mean Square Difference

Conclusion

- High level of agreement between the Monash, Livermore and Penelope for scattered photon and Compton electron kinetic energy spectra
- Compton electron polar angle distributions of Monash approach Livermore and Penelope at around 2.5 MeV
- Compton electron azimuthal angle distributions of Monash never fully approach those of Livermore and Penelope
- Incident photon energy and atomic number dependence on Monash's Compton electron polar and azimuthal angle distributions
- G4MUComptonModel is a viable alternative to the Compton scattering models of Livermore and Penelope
 MONASH University

Further Work

- Photon polarisation
- Addition of electron momentum density functions calculated with GRASP2K Dirac-Hartree-Fock wavefunctions¹
- Development of a model to account for influence of the atomic electromagnetic field potential in the relativistic impulse approximation
- Experimental validation of Compton electron algorithms

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ヨ ・ ク へ つ

¹Com. Phys. Commun. 177 597-622, 2007

- Matthew Dimmock, John Gillam and David Paganin
- Sebastien Incerti and Vladimir Ivantchenko
- School of Physics and Faculty of Science, Monash University