
30/08/2012

Testing Geant4 using
CMake/CTest/CDash
Geant4 Collaboration Meeting, September 2012, Chartres

Sunday, September 9, 12

Goals
✤ To introduce a new Geant4 Software Process with much more shared

responsibility among developers

✤ To ease the development of Unit and Integration Tests

✤ These are full responsibility of developers

✤ To share responsibility of integration testing

✤ Developers should be responsible of the consequences of her/
his new code does to the rest of Geant4 and for all supported
platforms

✤ To easily extend the testing system with new tests and new
platforms

2

Sunday, September 9, 12

Geant4 Software Process

3

Tag
DB

Developers
check-in code

 an creates tags

SVN
repository

Distributed
nodes use CMake

CTest to build
and run tests

Code checkout

Results posted
on Web Server

Developers
review results

Supervisor
accepts/rejects

tags

Sunday, September 9, 12

Main Player: The Developer
✤ Developers are responsible for their code to run correctly and not

affecting negatively other G4 functionality

✤ The developer typically:

✤ Checks-out, modifies and builds successfully the code (with
CMake)

✤ Develops and runs Unit Tests to exercise his/her code in isolation
in his/her preferred platform (with CMake/CTest)

✤ Commits code to SVN and creates new “Tags”

✤ Inspects the results of running the new code for all Integration
Tests and Examples in all supported platforms (with CDash)

✤ Take corrective actions ASAP: rejecting “Tags”, or committing new
code with the fixes 4

Sunday, September 9, 12

Distributed Build/Test Nodes
✤ CERN has provided a number of systems to build and run all defined

tests in a continuous integration mode
✤ Some of the nodes are physical nodes and others virtual machines

✤ They cover all the main supported platforms by Geant4:
✤ Linux (slc5, slc6) with gcc 4.x, icc
✤ Windows (xp, 7) with vc9 and vc10
✤ MacOSX (10.6, 10.7, and soon 10.8) with gcc 4.1 and clang 3.1

✤ Every ‘build’ (checkout, configuration, build, run tests) in CDash has
a “Build Name” and belongs to a “Build Group”

✤ We are currently implementing workflows based on the tool
ElectricCommander to automate the launching of the builds

5

Sunday, September 9, 12

http://www.electric-cloud.com/products/electriccommander.php
http://www.electric-cloud.com/products/electriccommander.php

Build Groups
✤ Nightly - Runs everyday shortly after midnight (CET) with all

‘selected’ and ‘accepted’ tags on top of the monthly reference tag
✤ Full SVN checkout and full re-build for all supported platforms
✤ It includes all integration tests and examples
✤ ‘Tags’ can only be ‘Accepted’ if do not break the Nightly group

✤ Continuous - Runs every time new tags are added on top of the
monthly reference including the newly ‘Proposed’ tags.
✤ SNV update and incremental build (beware that compilation

warnings are reported once)
✤ It includes only the integration tests with low statistics
✤ Results should be available in less than 1 hour (not for the first

build of the day)
✤ ‘Tags’ can only be ‘Selected’ if do not break the Continuous group 6

Sunday, September 9, 12

Build Groups (2)
✤ PhysicsChecks - Extra physics checks. Run every day (or week) with

additional physics validation checks (see A.Dotti Parallel session 7A)
✤ It includes validation checks with often long running times
✤ This group is not used for selecting or accepting new ‘Tags’
✤ Failures may be long-term reminders for improving the physics

quality. The history of when a failure started is kept.
✤ Release - They only run during release periods on top of candidate

branches with all the integration tests and examples
✤ Experimental - Experimental builds run every day or on demand

with new experimental platforms (new compilers, options, etc.)
✤ Once build runs successfully it may be moved to the Nightly group

7

Sunday, September 9, 12

Build Names
✤ Build names are composed as follows:

✤ The names are intended for humans to describe in a single string the
full conditions of the build

✤ As much as possible they are obtained automatically

✤ Examples:

✤ x86_64-slc5-gcc43, x86-win7-vc10, x86_64-slc5-gcc43-staticlibs,
09-05-ref-08_branch-x86_64-slc5-gcc43

8

processor
architecture

operating system
+ version

compiler
+ version

other build
options

code
version

Sunday, September 9, 12

http://cdash.cern.ch/buildSummary.php?buildid=13797
http://cdash.cern.ch/buildSummary.php?buildid=13797
http://cdash.cern.ch/buildSummary.php?buildid=13793
http://cdash.cern.ch/buildSummary.php?buildid=13793
http://cdash.cern.ch/buildSummary.php?buildid=13751
http://cdash.cern.ch/buildSummary.php?buildid=13751
http://cdash.cern.ch/buildSummary.php?buildid=13813
http://cdash.cern.ch/buildSummary.php?buildid=13813

Publishing results in CDash
✤ Once the builds at the various nodes are done, CTest uploads the

results to the CDash server (cdash.cern.ch)

✤ Results are a set of XML files, one for each build phase (update,
configuration, build and test)

✤ Results are ‘pushed’ to the CDash server

✤ CDash makes use of a database to keep the results for as long as
necessary

✤ Queries are possible

✤ CDash can report by e-mail of failures in submissions

✤ So far enabled for the System Testing mailing list

9

Sunday, September 9, 12

changes from
previous build on
the same group

Geant4 Dashboard

10

“group” sections

“build” names

selecting the date
switching
between

advanced and
simple views

Sunday, September 9, 12

Navigating in the Dashboard

11

The actual list of “tags” used in
this build

Sunday, September 9, 12

Extending the Build/Test Platforms
✤ CERN has provided a number of build and test nodes for the

‘supported’ platforms but we can extend it easily for groups having
special requirements on additional platforms or special configurations

✤ Since results are ‘pushed’ to CDash other build nodes can be setup
elsewhere and contribute to the testing infrastructure

✤ A simple script like this one needs
to be run regularly (e.g. cron job,
ElectricCommander, etc.)

✤ Other example scripts can be
obtained at URL:
svn+ssh://svn.cern.ch/reps
/geant4/trunk/geant4/tests
/tools/ctest

12

#!/usr/bin/env bash
#---

#---Xerces-C--
export XERCESC_ROOT_DIR=/build/externals/xerces-c-3.1.0
export DYLD_LIBRARY_PATH=${XERCESC_ROOT_DIR}/lib:$
{DYLD_LIBRARY_PATH}

#---
THIS=$(dirname $0)
WORKDIR=/build/cdash/G4
CONFIG=mac106-gcc42
MODE=nightly

export VERSION=g4tags-dev
export SOURCE=${WORKDIR}/${MODE}/${VERSION}
export BINARY=${WORKDIR}/${MODE}/${CONFIG}

if [! -d "${SOURCE}"]; then
 ${THIS}/g4tagsvn.py update -c ${VERSION} -d ${SOURCE} -q
fi
#---Run the CTest script-----------------------------
ctest -V -S ${THIS}/g4${MODE}.cmake

Sunday, September 9, 12

Extending the Set of Tests
✤ Adding new tests is very straight forward

✤ Write the test in C++ in the directory tests/testXX following the
standard structure (/src, /include)

✤ Note that test will fail if RC != 0 or any output in the err stream

✤ Provide test definitions in CMakeLists.txt file

✤ example:

✤ Commit and create
new ‘Tag’

✤ It will be automatically
added to ‘Continuous’
and ‘Nightly’ groups

13

cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(test74)
find_package(Geant4 REQUIRED)
include(${Geant4_USE_FILE})

GEANT4_EXECUTABLE(test74 test74.cc src/*.cc)

#---Test definitions--
GEANT4_ADD_TEST(test74
 COMMAND test74 ${CMAKE_CURRENT_SOURCE_DIR}/test74.in
 BUILD test74
 LABELS Nightly Continuous
 ENVIRONMENT ${GEANT4_TEST_ENVIRONMENT})

GEANT4_ADD_TEST(test74-largeN
 COMMAND test74 ${CMAKE_CURRENT_SOURCE_DIR}/test74.large_N.in
 DEPENDS test74
 LABELS Nightly Continuous
 ENVIRONMENT ${GEANT4_TEST_ENVIRONMENT})

Sunday, September 9, 12

Summary
✤ Introduced a new Software Process in which the Developer has a

major role in the Integration Testing

✤ Making extensive use of the Kitware software development tools:
CMake, CTest and CDash

✤ Since discovering problems earlier has huge
advantages we have introduced a continuous
integration and testing

✤ Encouraging and facilitating the enlargement
of the set of tests with new quality tests,
with new platforms and the introduction of
poorly tested configurations

14

Sunday, September 9, 12

