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Goals
✤ To introduce a new Geant4 Software Process with much more shared 

responsibility among developers

✤ To ease the development of Unit and Integration Tests

✤ These are full responsibility of developers

✤ To share responsibility of integration testing

✤ Developers should be responsible of the consequences of her/
his new code does to the rest of Geant4 and for all supported 
platforms

✤ To easily extend the testing system with new tests and new 
platforms
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Geant4 Software Process
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Main Player: The Developer 
✤ Developers are responsible for their code to run correctly and not 

affecting negatively other G4 functionality

✤ The developer typically:

✤ Checks-out, modifies and builds successfully the code (with 
CMake)

✤ Develops and runs Unit Tests to exercise his/her code in isolation 
in his/her preferred platform (with CMake/CTest)

✤ Commits code to SVN and creates new “Tags”

✤ Inspects the results of running the new code for all Integration 
Tests and Examples in all supported platforms (with CDash)

✤ Take corrective actions ASAP: rejecting “Tags”, or committing new 
code with the fixes 4
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Distributed Build/Test Nodes
✤ CERN has provided a number of systems to build and run all defined 

tests in a continuous integration mode
✤ Some of the nodes are physical nodes and others virtual machines

✤ They cover all the main supported platforms by Geant4: 
✤ Linux (slc5, slc6) with gcc 4.x, icc
✤ Windows (xp, 7) with vc9 and vc10
✤ MacOSX (10.6, 10.7, and soon 10.8) with gcc 4.1 and clang 3.1

✤ Every ‘build’ (checkout, configuration, build, run tests) in CDash has 
a “Build Name” and belongs to a “Build Group”

✤ We are currently implementing workflows based on the tool 
ElectricCommander to automate the launching of the builds
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Build Groups
✤ Nightly  - Runs everyday shortly after midnight (CET) with all 

‘selected’ and ‘accepted’ tags on top of the monthly reference tag
✤ Full SVN checkout and full re-build for all supported platforms
✤ It includes all integration tests and examples
✤ ‘Tags’ can only be ‘Accepted’ if do not break the Nightly group 

✤ Continuous - Runs every time new tags are added on top of the 
monthly reference including the newly ‘Proposed’ tags. 
✤ SNV update and incremental build (beware that compilation 

warnings are reported once)
✤ It includes only the integration tests with low statistics
✤ Results should be available in less than 1 hour (not for the first 

build of the day)
✤ ‘Tags’ can only be ‘Selected’ if do not break the Continuous group 6
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Build Groups (2)
✤ PhysicsChecks - Extra physics checks. Run every day (or week) with 

additional physics validation checks (see A.Dotti Parallel session 7A)
✤ It includes validation checks with often long running times
✤ This group is not used for selecting or accepting new ‘Tags’
✤ Failures may be long-term reminders for improving the physics 

quality. The history of when a failure started is kept.
✤ Release - They only run during release periods on top of candidate 

branches with all the integration tests and examples
✤ Experimental - Experimental builds run every day or on demand 

with new experimental platforms (new compilers, options, etc.)
✤ Once build runs successfully it may be moved to the Nightly group
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Build Names
✤ Build names are composed as follows:

✤ The names are intended for humans to describe in a single string the 
full conditions of the build

✤ As much as possible they are obtained automatically

✤ Examples:

✤ x86_64-slc5-gcc43, x86-win7-vc10, x86_64-slc5-gcc43-staticlibs, 
09-05-ref-08_branch-x86_64-slc5-gcc43
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Publishing results in CDash
✤ Once the builds at the various nodes are done, CTest uploads the 

results to the CDash server (cdash.cern.ch)

✤ Results are a set of XML files, one for each build phase (update, 
configuration, build and test)

✤ Results are ‘pushed’ to the CDash server

✤ CDash makes use of a database to keep the results for as long as 
necessary

✤ Queries are possible

✤ CDash can report by e-mail of failures in submissions

✤ So far enabled for the System Testing mailing list
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changes from 
previous build on 
the same group

Geant4 Dashboard
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Navigating in the Dashboard
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Extending the Build/Test Platforms
✤ CERN has provided a number of build and test nodes for the 

‘supported’ platforms but we can extend it easily for groups having 
special requirements on additional platforms or special configurations

✤ Since results are ‘pushed’ to CDash other build nodes can be setup 
elsewhere and contribute to the testing infrastructure 

✤ A simple script like this one needs
to be run regularly (e.g. cron job, 
ElectricCommander, etc.)

✤ Other example scripts can be 
obtained at URL: 
svn+ssh://svn.cern.ch/reps
/geant4/trunk/geant4/tests
/tools/ctest
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#!/usr/bin/env bash
#-------------------------------------------------------

#---Xerces-C--------------------------------------------
export XERCESC_ROOT_DIR=/build/externals/xerces-c-3.1.0
export DYLD_LIBRARY_PATH=${XERCESC_ROOT_DIR}/lib:$
{DYLD_LIBRARY_PATH}

#-------------------------------------------------------
THIS=$(dirname $0)
WORKDIR=/build/cdash/G4
CONFIG=mac106-gcc42
MODE=nightly

export VERSION=g4tags-dev
export SOURCE=${WORKDIR}/${MODE}/${VERSION}
export BINARY=${WORKDIR}/${MODE}/${CONFIG}

if [ ! -d "${SOURCE}" ]; then 
  ${THIS}/g4tagsvn.py update -c ${VERSION} -d ${SOURCE} -q
fi
#---Run the CTest script-----------------------------
ctest -V -S ${THIS}/g4${MODE}.cmake 
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Extending the Set of  Tests
✤ Adding new tests is very straight forward

✤ Write the test in C++ in the directory tests/testXX following the 
standard structure (/src, /include)

✤ Note that test will fail if RC != 0 or any output in the err stream

✤ Provide test definitions in CMakeLists.txt file

✤ example:

✤ Commit and create 
new ‘Tag’

✤ It will be automatically
added to ‘Continuous’
and ‘Nightly’ groups
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cmake_minimum_required(VERSION 2.6 FATAL_ERROR)
project(test74)
find_package(Geant4 REQUIRED)
include(${Geant4_USE_FILE})

GEANT4_EXECUTABLE(test74 test74.cc src/*.cc)

#---Test definitions------------------------------------------------------
GEANT4_ADD_TEST(test74 
                COMMAND test74 ${CMAKE_CURRENT_SOURCE_DIR}/test74.in
                BUILD test74
                LABELS Nightly Continuous
                ENVIRONMENT ${GEANT4_TEST_ENVIRONMENT})

GEANT4_ADD_TEST(test74-largeN 
                COMMAND test74 ${CMAKE_CURRENT_SOURCE_DIR}/test74.large_N.in
                DEPENDS test74
                LABELS Nightly Continuous
                ENVIRONMENT ${GEANT4_TEST_ENVIRONMENT})
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Summary
✤ Introduced a new Software Process in which the Developer has a 

major role in the Integration Testing

✤ Making extensive use of the Kitware software development tools: 
CMake, CTest and CDash

✤ Since discovering problems earlier has huge
advantages we have introduced a continuous
integration and testing

✤ Encouraging and facilitating the enlargement
of the set of tests with new quality tests, 
with new platforms and the introduction of
poorly tested configurations
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