Geant4/CMake/CTest/CDash
Working Session Intro

@ Topics for 9.6 and X

@ Input from you!

@ Pick and plan key
topics for 9.6 and X

@ Identify impacts for
X (Plenary 8)

Pre-Session Summary

6 (Aufumn) Towads X (Posf 96)
: I %o New 64 Cake API

o Documen‘rahon Update | ' "'
B3 geanfll,_conﬁg % In'l'erface DeSign?
@ Geant4Config.cmake @ Library Structure? ,

@ Testing System

o "Geant4.gmk”

@ Data/UI/Vis Bugs @ GNUmake Retirement? :_

| o Tests and Examples {| o Impacts : Plenary 8 |

Topics for Release 9.6

Documentation

@ Remaining for 9.6: Bugs 1204, 1280, 1291

@ For 9.6, focus should be on users (developer
guides for "X"?)

@ Expand and contract as needed - but K.I.S.S

Insfalla’rlon Gulde

What is good wha’r has
caused confusion/issues?

Integrate Walkthroughs? 3
Move “how to build ap? |

t Remove "developers” section” §

README.txt

Familiar "Quickstart”

Summary of Inst. Guide?

App. Dev. Guide

 ? __ Make first chapter

“Your first App“?

Appendices on CMake and
GNUmake?

Needed/Wanted?
If so, what is scope?

Geant4Config.cmake

@ "ProjectConfig” module for Geant4
@ Remaining for 9.6:
@ Documentation!
@ Use of “components” vs “options” or both?

@ Mainly for UI/Vis driver selection.

geant4-conhg

@ Unix (bash) interface for non-CMake builds

@ Remaining for 9.6: Bugs 1203, 1290, 1328

@ Add "--data-dir”, “"--g4make-file” interfaces?

@ Add man page(s)?

“Geant4.GNUmake”

@ Remaining for 9.6: Bugs 1232

@ Location -> lib/Geant4-9.6.0 (arch dependent)

® Use GNUmake fragment over environment?

@ Advantageous, but... deprecation looming?

Data Installs

@ Remaining for 9.6: Bug 1285
@ Data can now be installed in custom location
@ Now implementing reuse of preinstalled data

@ Build/install mix - CMake “data API"?

@ Open issues: binary packages, C++ (versions)

UI/Vis Config

@ Remaining for 9.6: Bug 1320
@ Triaged (OpenInventor debug/release)
@ Fix should be straightforward

@ Anything special for Mountain Lion or Win7?

iy
A
i e W e Pl
= i i ¥ Y
x iy o J
] =

o, g o P

T N

-,

Examples/Custom
Modules

@ Test case for "Geant4Config.cmake” updates

@ Use of custom modules, e.g. "FindAIDA.cmake”
@ Use of svn:externals for sharing??

@ Balance integration vs testing vs standalone

Topics for Release "X”

Integrate Documents?

@ Integrate guides into build (“make doc”)?

@ Track changes for “"X” with tags(?)

@ Need XSL processor and Doxygen (others?)

@ Ok. if its optional?

GNUmake Retirement?

@ Do we want to do this for "X“?
@ 9.6 => robust CMake/bash interfaces

@ If so, needs a clear timetable and migration
programme for developers and users.

@ I would say has to be in "X"-befa.

@ Support? Objections?

G4MT in " X"

@ Need early input here - concerns for build:
@ Cross-platform (*NIX + Win32)?
@ Compiler flags?
@ Sequential vs MT build (both ala Boost)?

@ Internal/external MT dependencies?

Geant4 CMake "API”

@ Basically, improving “sources.cmake” for
developers, plus other tools

@ Several interlocking fopics

@ Buildsystem AND architecture aspects!

- Include paths..
include_directories(${MYEXT_INCLUDE_DIRS})
include_directories(${PROJECT_SOURCE_DIR}/source/global/
management/include)
include_directories(${PROJECT_SOURCE_DIR}/source/
1ntercoms/include)

- Define the Module
geant4_define_module(G4foo
HEADERS
G4Foo.hh
SOURCES
G4Foo.cc
GRANULAR_DEPENDENCIES
G4globman
G41intercoms
GLOBAL_DEPENDENCIES
G4global
G4intercoms
LINK_LIBRARIES
${MYEXT_LIBRARIES?

Transient Dependencies

@ You #include “foo.hh”, but this #includes
“bar.hh”

@ So include path to “"bar.hh” also needed.

Forward Declarations

#include “bar.hh” class bar;
class foo ¢ class foo ¢
private: private:

bar f_; bar* f_;
;; };

@ Use as much as possible to hide deps

@ It can also affect how linking is done

“Modularization”

@ Neither global nor granular libraries ideal
@ Prefer single structure for clarity (MT?)
@ Merge some libraries, break up others?
@ G4global + G4intercoms + ... = "G4Core”?
@ G4processes = 'G4EMProcesses” + ...7

@ Useful examples from Qt, ITK, Boost?

“Public API”

@ "Hide"” headers of implementation details in
subdirectories:

foo.hh
foo.hh
foo_detail.hh foo_detail.hh
foo_impl.hh
foo_impl.hh

® Reduces install footprint, clarifies actual
API, paves way for “tighter” libraries

sources.cmake

@ Transient deps and explicit listing are
"hottest” topics!

@ How fo handle? What interface?
@ Things to watch
@ Maximise use of "Vanilla CMake”
@ Generator neutral (Make vs Xcode vs...)

@ Reliable and robust developer workflow

- Optional sources
1T(GEANT4_IS_MT)
set(MT_SOURCES src/G4FooMT.cc)
1T(WIN32)
11st(APPEND MT_SOURCES src/G4FooMT_win32.cc)
endif()
endif()

- Define the Module
geant4_add_module(G4foo
PUBLIC_HEADERS
include/G4Foo0.hh
include/detail/G4Foo_detail.hh
PRIVATE_HEADERS
include/private/G4Foo_1impl.hh
SOURCES
src/G4Foo0. cc
src/G4Foo_1mpl.cc
${MT_SOURCES}
LINK_INTERFACE_LIBRARIES
G4global
G41intercoms
MyExt

Testing System

@ Expand unit testing

@ Investigate use of Google Test?
@ Documentation for developers

@ Tidy up tests/ subdirectory

Binary Packaging

@ "Easy” with CPack, and a couple of things
to think about:

@ How to handle external dependencies -
we do expose some external interfaces

® How to handle data - download when
installing?

