
Geant4/CMake/CTest/CDash
Working Session Intro

Topics for 9.6 and X

Input from you!

Pick and plan key
topics for 9.6 and X

Identify impacts for
X (Plenary 8)

Pre-Session Summary

Documentation Update

geant4-config

Geant4Config.cmake

“Geant4.gmk”

Data/UI/Vis Bugs

Tests and Examples

New G4 CMake API

Interface Design?

Library Structure?

Testing System

GNUmake Retirement?

Impacts : Plenary 8

For 9.6 (Autumn) Towards X (Post 9.6)

Topics for Release 9.6

Documentation

Remaining for 9.6: Bugs 1204, 1280, 1291

For 9.6, focus should be on users (developer
guides for “X”?)

Expand and contract as needed - but K.I.S.S

What is good, what has
caused confusion/issues?

Integrate Walkthroughs?

Move “how to build apps”?

Remove “developers” section”

Installation Guide

Make first chapter
“Your first App”?

Appendices on CMake and
GNUmake?

App. Dev. Guide

Needed/Wanted?
If so, what is scope?

“Developer Guide”

Familiar “Quickstart”
Summary of Inst. Guide?

README.txt

Geant4Config.cmake

“ProjectConfig” module for Geant4

Remaining for 9.6:

Documentation!

Use of “components” vs “options” or both?

Mainly for UI/Vis driver selection.

geant4-config

Unix (bash) interface for non-CMake builds

Remaining for 9.6: Bugs 1203, 1290, 1328

Add “--data-dir”, “--g4make-file” interfaces?

Add man page(s)?

“Geant4.GNUmake”

Remaining for 9.6: Bugs 1232

Location -> lib/Geant4-9.6.0 (arch dependent)

Use GNUmake fragment over environment?

Advantageous, but… deprecation looming?

Data Installs

Remaining for 9.6: Bug 1285

Data can now be installed in custom location

Now implementing reuse of preinstalled data

Build/install mix - CMake “data API”?

Open issues: binary packages, C++ (versions)

UI/Vis Config

Remaining for 9.6: Bug 1320

Triaged (OpenInventor debug/release)

Fix should be straightforward

Anything special for Mountain Lion or Win7?

Tests

Stable for 9.6?

Testing/Shifts for 9.6?

Feedback on shifts?

Examples/Custom
Modules

Test case for “Geant4Config.cmake” updates

Use of custom modules, e.g. “FindAIDA.cmake”

Use of svn:externals for sharing??

Balance integration vs testing vs standalone

Topics for Release “X”

Integrate Documents?

Integrate guides into build (“make doc”)?

Track changes for “X” with tags(?)

Need XSL processor and Doxygen (others?)

O.k. if it’s optional?

GNUmake Retirement?

Do we want to do this for “X”?

9.6 => robust CMake/bash interfaces

If so, needs a clear timetable and migration
programme for developers and users.

I would say has to be in “X”-beta.

Support? Objections?

G4MT in “X”

Need early input here - concerns for build:

Cross-platform (*NIX + Win32)?

Compiler flags?

Sequential vs MT build (both ala Boost)?

Internal/external MT dependencies?

Geant4 CMake “API”

Basically, improving “sources.cmake” for
developers, plus other tools

Several interlocking topics

Buildsystem AND architecture aspects!

- Include paths…
include_directories(${MYEXT_INCLUDE_DIRS})
include_directories(${PROJECT_SOURCE_DIR}/source/global/
management/include)
include_directories(${PROJECT_SOURCE_DIR}/source/
intercoms/include)

- Define the Module
geant4_define_module(G4foo
 HEADERS
 G4Foo.hh
 SOURCES
 G4Foo.cc
 GRANULAR_DEPENDENCIES
 G4globman
 G4intercoms
 GLOBAL_DEPENDENCIES
 G4global
 G4intercoms
 LINK_LIBRARIES
 ${MYEXT_LIBRARIES}
)

Transient Dependencies

You #include “foo.hh”, but this #includes
“bar.hh”

So include path to “bar.hh” also needed.

Minimize these!!!!! Two/Three aspects….

Forward Declarations

Use as much as possible to hide deps

It can also affect how linking is done

#include “bar.hh”

class foo {
…
 private:
 bar f_;
};

class bar;

class foo {
…
 private:
 bar* f_;
};

“Modularization”

Neither global nor granular libraries ideal

Prefer single structure for clarity (MT?)

Merge some libraries, break up others?

G4global + G4intercoms + … = “G4Core”?

G4processes = “G4EMProcesses” + …?

Useful examples from Qt, ITK, Boost?

“Public API”
“Hide” headers of implementation details in
subdirectories:

Reduces install footprint, clarifies actual
API, paves way for “tighter” libraries

include/
 foo.hh
 foo_detail.hh
 foo_impl.hh

include/
 foo.hh
 detail/
 foo_detail.hh
 private/
 foo_impl.hh

sources.cmake
Transient deps and explicit listing are
“hottest” topics!

How to handle? What interface?

Things to watch

Maximise use of “Vanilla CMake”

Generator neutral (Make vs Xcode vs…)

Reliable and robust developer workflow

- Optional sources
if(GEANT4_IS_MT)
 set(MT_SOURCES src/G4FooMT.cc)
 if(WIN32)
 list(APPEND MT_SOURCES src/G4FooMT_win32.cc)
 endif()
endif()

- Define the Module
geant4_add_module(G4foo
 PUBLIC_HEADERS
 include/G4Foo.hh
 include/detail/G4Foo_detail.hh
 PRIVATE_HEADERS
 include/private/G4Foo_impl.hh
SOURCES

 src/G4Foo.cc
 src/G4Foo_impl.cc
 ${MT_SOURCES}
 LINK_INTERFACE_LIBRARIES
 G4global
 G4intercoms
 MyExt
)

Testing System

Expand unit testing

Investigate use of Google Test?

Documentation for developers

Tidy up tests/ subdirectory

Binary Packaging

“Easy” with CPack, and a couple of things
to think about:

How to handle external dependencies -
we do expose some external interfaces

How to handle data - download when
installing?

